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Çengelköy 34680, Istanbul, Turkey
3Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA

4Faculty of Engineering and Natural Sciences, Sabancı University, Orhanlı, Tuzla 34956, Istanbul, Turkey
5Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

(Received 9 February 2010; revised manuscript received 24 September 2011; published 15 November 2011)

The global phase diagram of the spinless Falicov-Kimball model in d = 3 spatial dimensions is obtained by
renormalization-group theory. This global phase diagram exhibits five distinct phases. Four of these phases are
charge-ordered (CO) phases, in which the system forms two sublattices with different electron densities. The
CO phases occur at and near half filling of the conduction electrons for the entire range of localized electron
densities. The phase boundaries are second order, except for the intermediate and large interaction regimes, where
a first-order phase boundary occurs in the central region of the phase diagram, resulting in phase coexistence at and
near half filling of both localized and conduction electrons. These two-phase or three-phase coexistence regions
are between different charge-ordered phases, between charge-ordered and disordered phases, and between dense
and dilute disordered phases. The second-order phase boundaries terminate on the first-order phase transitions via
critical endpoints and double critical endpoints. The first-order phase boundary is delimited by critical points. The
cross-sections of the global phase diagram with respect to the chemical potentials and densities of the localized
and conduction electrons, at all representative interactions strengths, hopping strengths, and temperatures, are
calculated and exhibit ten distinct topologies.
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I. INTRODUCTION

The Falicov-Kimball model (FKM) was proposed by L. M.
Falicov and Kimball1 to analyze the thermodynamics of
semiconductor-metal transitions in SmB6 and transition-metal
oxides.2–5 The model incorporates two types of electrons: one
type can undergo hopping between sites and the other type
cannot hop, thereby being localized at the sites. Thus, in its
introduction, the FKM described the Coulomb interaction be-
tween mobile d-band electrons and localized f -band electrons.
There have been a multitude of subsequent physical interpreta-
tions based on this interaction, including that of localized ions
attractively interacting with mobile electrons, which yields
crystalline formation.6,7 Another physical interpretation of the
model is as a binary alloy, in which the localized degree of
freedom reflects A or B atom occupation.8,9 In this paper
we employ the original language, with d and f electrons as
conduction and localized electrons with a repulsive interaction
between them.

Since there is no interacting spin degree of freedom in the
Hamiltonian, the model is traditionally studied in the spinless
case, commonly referred as the spinless FKM (SFKM) and
which is in fact a special case of the Hubbard model in
which one type of spin (e.g., spin-up) cannot hop.10 In spite
of its simplicity, this model is able to describe many physical
phenomena in rare-earth and transition metal compounds, such
as metal transitions, charge ordering, etc.

Beyond the introduction of the spin degree of freedom
for both electrons,11–27 there also exist many extensions
of the original model. The most widely studied exten-
sions include multiband hybridization,28–35 f -f hopping,36–40

correlated hopping,41–45 nonbipartite lattices,46,47 hard-core
bosonic particles,47 magnetic fields,19,24–27,47,48 and next-
nearest-neighbor hopping.49 Exhaustive reviews are available
in Refs. 50–53. The wider physical applications of both the
basic FKM and its extended versions have aimed at explaining
valence transitions,12,18–20 metal-insulator transitions,12,21–23,54

mixed valence phenomena,55 Raman scattering,56 colossal
magnetoresistance,24–27 electronic ferroelectricity,34,37–39 and
phase separation.12,40,41,57–59

After the initial works on the FKM,1–5 the literature had to
wait 14 years for rigorous results. Two independent studies, by
Kennedy and Lieb6,7 and by Brandt and Schmidt60,61 proved
for dimensions d � 2 that, at low temperatures, FKM has
long-range charge order with the formation of two sublattices.
Various methods have been used in the study of the FKM. In
most of these studies, either the d → ∞ infinite-dimensional
limit or d = 1,2 low-dimensional cases have been investigated.
Studies include limiting cases such as ground-state analysis
or the large interaction limit. Renormalization-group theory62

offers fully physical and fairly easy techniques to yield global
phase diagrams and other physical phenomena. The nontrivial
nature of SFKM motivated us to determine the global phase
diagram of the model, which resulted in a richly complex phase
diagram involving charge ordering and phase coexistence, as
exemplified in Fig. 1.

We use the general method for arbitrary dimensional quan-
tum systems developed by A. Falicov and Berker63 to obtain
the global phase diagram of the SFKM in d = 3, in terms of
both the chemical potentials and the densities of the two types
of electrons, for all temperatures. The outline of this paper is as
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FIG. 1. Evolution of the cross sections of the global phase diagram under t increase for |U | = 1, in terms of the chemical potentials
(upper panels) and densities (lower panels) of the localized and conduction electrons. In phase subscripts throughout this paper, the first and
second subscripts respectively describe localized and conduction electron densities, as dilute (d) or dense (D). The dotted and thick full lines
are respectively first- and second-order phase transitions. Phase separation (i.e., phase coexistence) occurs inside the dotted boundaries, as
identified appropriately but not repeatedly in the figure. The dashed lines are not phase transitions, but smooth changes between the different
density regions of the disordered (δ) phase. The charge-ordered phases are denoted by CO. The charge-ordered phases occur as strips near
the half filling of the conduction electrons. Phase separation occurs near the simultaneous half filling of both the localized and conduction
electrons. The four rounded coexistence regions, two of which disappear as t is increased, are two-phase coexistence regions between the
disordered δ phases that are distinguished by electron densities. The narrow triangular regions are three-phase coexistence regions between the
δ phases. The second-order transition lines bounding the charge-ordered CO phases terminate at critical endpoints on the coexistence regions.
These endpoints, as t is increased, move past each other, as detailed in Sec. IV below, leading to coexistence regions between the different
charge-ordered phases and between the charge-ordered and disordered phases.

follows: In Sec. II, we introduce the SFKM and, in Sec. III, we
present the method.63 Calculated phase diagrams are presented
in Sec. IV, for the non-hopping (t = 0) classical submodel
and for the hopping (t �= 0) quantum regimes of small,
intermediate, and large |U |. We conclude the paper in Sec. V.

II. SPINLESS FALICOV-KIMBALL MODEL

The SFKM is defined by the Hamiltonian

−βH = t
∑

〈ij〉
(c†i cj + c

†
j ci) + U0

∑

i

niwi

+μ0

∑

i

ni + ν0

∑

i

wi , (1)

where β = 1/kBT and 〈ij 〉 denotes that the sum runs over
all nearest-neighbor pairs of sites. Note that, as in all
renormalization-group studies, the Hamiltonian has absorbed
the inverse temperature. The dimensionless hopping strength
t can therefore be used as the inverse temperature. Here c

†
i

and ci are, respectively, creation and annihilation operators
for the conduction electrons at lattice site i, obeying the
anticommutation rules {ci,cj } = {c†i ,c†j } = 0 and {c†i ,cj } =
δij , while ni = c

†
i ci and wi are electron number operators for

conduction and localized electrons respectively. The operator
wi takes the values 1 or 0, for site i being respectively
occupied or unoccupied by a localized electron. The particles
are fermions, so that the Pauli exclusion principle forbids the

occupation of a given site by more than one localized electron
or by more than one conduction electron.

The first term of the Hamiltonian is the kinetic energy
term, responsible for the quantum nature of the model. The
system being invariant under sign change of t (via a phase
change of the local basis states in one sublattice), only positive
t values are considered. The second term is the screened
on-site Coulomb interaction between localized and conduction
electrons, with positive and negative U0 values correspond-
ing to attractive and repulsive interactions. We consider
only the repulsive case, since the attractive case can be
connected to the repulsive one by the particle-hole symmetry
possessed by either type of electrons. Particle-hole symmetries
are achieved by the transformations of wi → 1 − wi for
the localized electrons and c

†
i → κici , ci → κic

†
i for the

conduction electrons, where, for a bipartite lattice, κi = 1 for
one sublattice and κi = −1 for the other.8,53 The last two terms
of the Hamiltonian are the chemical potential terms with ν0 and
μ0 being the chemical potential for a localized and conduction
electron.

In order to carry out a renormalization-group transforma-
tion easily, we trivially rearrange the Hamiltonian given in
Eq. (1) into the equivalent form of

−βH =
∑

〈ij〉
[t(c†i cj + c

†
j ci) + U (niwi + njwj )

+μ(ni + nj ) + ν(wi + wj )]

≡
∑

〈ij〉
[−βHi,j ], (2)
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where, for a d-dimensional hypercubic lattice, U = U0/2d,
μ = μ0/2d, ν = ν0/2d, and −βHi,j is the two-site Hamilto-
nian involving only nearest-neighbor sites i and j .

III. RENORMALIZATION-GROUP THEORY

A. Suzuki-Takano method in d = 1

In d = 1 the Hamiltonian in Eq. (2) is

−βH =
∑

i

[−βHi,i+1]. (3)

The renormalization-group procedure traces out half of the
degrees of freedom in the partition function,64,65

Trodde
−βH = Trodde

∑
i [−βHi,i+1]

= Trodde
∑odd

i [−βHi−1,i−βHi,i+1]

�
odd∏

i

Trie
[−βHi−1,i−βHi,i+1]

=
odd∏

i

e−β ′H′
i−1,i+1

� e
∑odd

i [−β ′H′
i−1,i+1] = e−β ′H′

. (4)

Here and throughout this paper primes are used for the
renormalized system. Thus, as an approximation, the non-
commutativity of the operators beyond three consecutive sites
is ignored at each successive length scale, in the two steps
indicated by � in the above equation. Earlier studies63–74 have
established the quantitative validity of this procedure.

The above transformation is algebraically summarized in

e−β ′H′
i,k = Trj e{−βHi,j −βHj,k} , (5)

TABLE I. The two-site basis states that appear in Eq. (7), in
the form |wini,wjnj 〉. The total localized and conduction electron
numbers w and n, the eigenvalue u of the operator Tij defined after
Eq. (8) are indicated. |φ9−12〉 are respectively obtained from |φ5−8〉
by the action of Tij , while the corresponding Hamiltonian matrix
elements are multiplied by the u values of the states.

w n u Two-site basis states

0 0 + |φ1〉 = |00,00〉
0 1 + |φ2〉 = 1√

2
{|00,01〉 + |01,00〉}

0 1 − |φ3〉 = 1√
2
{|00,01〉 − |01,00〉}

0 2 − |φ4〉 = |01,01〉
1 0 + |φ5〉 = |00,10〉
1 1 + |φ6〉 = 1√

2
{|00,11〉 + |01,10〉}

1 1 − |φ7〉 = 1√
2
{|00,11〉 − |01,10〉}

1 2 − |φ8〉 = |01,11〉
2 0 + |φ13〉 = |10,10〉
2 1 + |φ14〉 = 1√

2
{|10,11〉 + |11,10〉}

2 1 − |φ15〉 = 1√
2
{|10,11〉 − |11,10〉}

2 2 − |φ16〉 = |11,11〉

TABLE II. The three-site basis states that appear in Eq. (7), in the
form |wini,wjnj ,wknk〉. The total localized and conduction electron
numbers w and n, the eigenvalue u of the operator Tik defined after
Eq. (8) are indicated. {|ψ11+3x〉}, x = 0,1, . . . ,15, are respectively
obtained from {|ψ9+3x〉} by the action of Tik , while the corresponding
Hamiltonian matrix elements are multiplied by the u values of the
states.

w n u Three-site basis states

0 0 + |ψ1〉 = |00,00,00〉
0 1 + |ψ2〉 = 1√

2
{|00,00,01〉 + |01,00,00〉}

0 1 + |ψ3〉 = |00,01,00〉
0 1 − |ψ4〉 = 1√

2
{|00,00,01〉 − |01,00,00〉}

0 2 + |ψ5〉 = 1√
2
{|00,01,01〉 − |01,01,00〉}

0 2 − |ψ6〉 = |01,00,01〉
0 2 − |ψ7〉 = 1√

2
{|00,01,01〉 + |01,01,00〉}

0 3 − |ψ8〉 = |01,01,01〉
1 0 + |ψ9〉 = |00,00,10〉
1 0 + |ψ10〉 = |00,10,00〉
1 1 + |ψ12〉 = 1√

2
{|00,00,11〉 + |01,00,10〉}

1 1 + |ψ13〉 = 1√
2
{|00,10,01〉 + |01,10,00〉}

1 1 + |ψ15〉 = |00,01,10〉
1 1 + |ψ16〉 = |00,11,00〉
1 1 − |ψ18〉 = 1√

2
{|00,00,11〉 − |01,00,10〉}

1 1 − |ψ19〉 = 1√
2
{|00,10,01〉 − |01,10,00〉}

1 2 + |ψ21〉 = 1√
2
{|00,01,11〉 − |01,01,10〉}

1 2 + |ψ22〉 = 1√
2
{|00,11,01〉 − |01,11,00〉}

1 2 − |ψ24〉 = |01,00,11〉
1 2 − |ψ25〉 = |01,10,01〉
1 2 − |ψ27〉 = 1√

2
{|00,01,11〉 + |01,01,10〉}

1 2 − |ψ28〉 = 1√
2
{|00,11,01〉 + |01,11,00〉}

1 3 − |ψ30〉 = |01,01,11〉
1 3 − |ψ31〉 = |01,11,01〉
2 0 + |ψ33〉 = |00,10,10〉
2 0 + |ψ34〉 = |10,00,10〉
2 1 + |ψ36〉 = 1√

2
{|00,10,11〉 + |01,10,10〉}

2 1 + |ψ37〉 = 1√
2
{|10,00,11〉 + |11,00,10〉}

2 1 + |ψ39〉 = |00,11,10〉
2 1 + |ψ40〉 = |10,01,10〉
2 1 − |ψ42〉 = 1√

2
{|00,10,11〉 − |01,10,10〉}

2 1 − |ψ43〉 = 1√
2
{|10,00,11〉 − |11,00,10〉}

2 2 + |ψ45〉 = 1√
2
{|00,11,11〉 − |01,11,10〉}

2 2 + |ψ46〉 = 1√
2
{|10,01,11〉 − |11,01,10〉}

2 2 − |ψ48〉 = |01,10,11〉
2 2 − |ψ49〉 = |11,00,11〉
2 2 − |ψ51〉 = 1√

2
{|00,11,11〉 + |01,11,10〉}

2 2 − |ψ52〉 = 1√
2
{|10,01,11〉 + |11,01,10〉}

2 3 − |ψ54〉 = |01,11,11〉
2 3 − |ψ55〉 = |11,01,11〉
3 0 + |ψ57〉 = |10,10,10〉
3 1 + |ψ58〉 = 1√

2
{|10,10,11〉 + |11,10,10〉}

3 1 + |ψ59〉 = |10,11,10〉
3 1 − |ψ60〉 = 1√

2
{|10,10,11〉 − |11,10,10〉}

3 2 + |ψ61〉 = 1√
2
{|10,11,11〉 − |11,11,10〉}

3 2 − |ψ62〉 = |11,10,11〉
3 2 − |ψ63〉 = 1√

2
{|10,11,11〉 + |11,11,10〉}

3 3 − |ψ64〉 = |11,11,11〉
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where i,j,k are three successive sites. The operator −β ′H′
i,k

acts on two-site states, while the operator −βHi,j − βHj,k

acts on three-site states. Thus we can rewrite Eq. (5) in matrix
form as

〈uivk|e−β ′H′
i,k |ūi v̄k〉 =

∑

sj

〈ui sj vk|e−βHi,j −βHj,k |ūi sj v̄k〉,

(6)

where state variables u�, v�, s�, ū�, and v̄� can be one of
the four possible single-site |w�,n�〉 states at each site �,
namely one of |00〉, |01〉, |10〉, and |11〉. Equation (6) indicates
that the unrenormalized 64 × 64 matrix on the right-hand
side is contracted into the renormalized 16 × 16 matrix on
the left-hand side. We use two-site basis states, {|φp〉}, and
three-site basis states, {|ψq〉}, in order to block-diagonalize
the matrices in Eq. (6). These basis states are the eigenstates
of total localized and conduction electron numbers. The set of
{|φp〉} and {|ψq〉} are given in Tables I and II, respectively. The
corresponding block-diagonal Hamiltonian matrices are given
in Appendixes A and B.

With these basis states, Eq. (6) can be rewritten as

〈φp|e−β ′H′
i,k |φp̄〉

=
∑

u,v,

ū,v̄,s

∑

q,q̄

〈φp|uivk〉〈uisj vk|ψq〉

· 〈ψq |e−βHi,j −βHj,k |ψq̄〉〈ψq̄ |ūisj v̄k〉〈ūi v̄k|φp̄〉. (7)

Once written in the basis states {|φp〉}, the block-diagonal
renormalized matrix has 13 independent elements, which
means that renormalization-group transformation of the
Hamiltonian generates nine more interaction constants apart
from t , U , μ, and ν. In this 13-dimensional interaction
space, the form of the Hamiltonian stays closed under
renormalization-group transformations. This Hamiltonian is

−βHi,j = t(c†i cj + c
†
j ci) + U (niwi + njwj )

+μ(ni + nj ) + ν(wi + wj ) + Jninj

+Kwiwj + Lninjwiwj + P (niwj + njwi)

+Vnninj (wi + wj ) + Vw(ni + nj )wiwj

+QTijwiwj + RTij (wi + wj ) + G, (8)

TABLE III. Interaction constants Kα , runaway coefficients K ′
α/Kα , and expectation values Mα = 〈K̂α〉, at the phase sinks. Here, K̂α are

used as abbreviations for the conjugate operators for interaction constants Kα (e.g., 〈t̂〉 = 〈c†i cj + c
†
j ci〉, 〈Û〉 = 〈niwi + njwj 〉, etc.). The

nonzero hopping expectation value is −a = −0.629 050. In the subscripts in the first columns, the left and right entries refer to the localized
and conduction electrons, respectively, as dilute (d) or dense (D).

Phase
The interaction constants Kα at the phase sinks

sink t U μ ν J K L P Vn Vw Q R

δdd 0 0 −∞ −∞ 0 0 0 0 0 0 0 0
δdD 0 ∞ ∞ −∞ 0 0 0 0 0 0 0 0
δDd 0 ∞ −∞ ∞ 0 0 0 0 0 0 0 0
δDD 0 0 ∞ ∞ 0 0 0 0 0 0 0 0
COdd ∞ ∞ −∞ −∞ ∞ −∞ ∞ −∞ −∞ ∞ ∞ −∞
COdD ∞ ∞ ∞ −∞ ∞ −∞ ∞ ∞ −∞ ∞ ∞ ∞
CODd ∞ ∞ −∞ ∞ ∼50 −∞ ∞ −∞ ∼−20 ∞ ∞ −∞
CODD ∞ ∞ ∞ ∞ ∼140 −∞ ∞ ∞ ∼−40 ∞ ∞ ∞

The runaway coefficients K ′
α/Kα at the phase sinks

Phase
sink t ′/t U ′/U μ′/μ ν ′/ν J ′/J K ′/K L′/L P ′/P V ′

n/Vn V ′
w/Vw Q′/Q R′/R

δdd, δDD − − 4 4 − − − − − − − −
δdD, δDd − 4 4 4 − − − − − − − −
COdd, COdD 2 2 2 4 4/3 2 4/3 2 4/3 2 2 2
CODd, CODD 2 2 2 4 1 2 4/3 2 1 2 2 2

The expectation values Mα at the phase sinks
Phase
sink 〈t̂〉 〈Û〉 〈μ̂〉 〈ν̂〉 〈Ĵ 〉 〈K̂〉 〈L̂〉 〈P̂ 〉 〈V̂n〉 〈V̂w〉 〈Q̂〉 〈R̂〉 Character

δdd 0 0 0 0 0 0 0 0 0 0 0 0 dilute-dilute
δdD 0 0 2 0 1 0 0 0 0 0 0 0 dilute-dense
δDd 0 0 0 2 0 1 0 0 0 0 1 2 dense-dilute
δDD 0 2 2 2 1 1 1 2 2 2 −1 −2 dense-dense
COdd −a 0 a 0 0 0 0 0 0 0 0 0 dilute-charge ord. dilute
COdD −a 0 2 − a 0 1 − a 0 0 0 0 0 0 0 dilute-charge ord. dense
CODd −a a a 2 0 1 0 a 0 a 1 2 dense-charge ord. dilute
CODD −a 2 − a 2 − a 2 1 − a 1 1 − a 2 − a 2 − 2a 2 − a −1 + 2a −2 + 4a dense-charge ord. dense
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TABLE IV. Interaction constants Kα and relevant eigenvalue exponents y1 at the phase boundary fixed points. For first-order phase
transitions, y1 = d = 3.

Phase Boundary Interaction constants Kα at the boundary fixed points

boundary type t U μ ν J K L P Vn Vw Q R Relevant eigenvalue exponent y1

COdD/CODd 1st ∞ −∞ ∞ −∞ ∞ ∞ ∞ −∞ −∞ ∞ ∞ −∞ 2μ − 2ν + J − K 3
order −Q − 2R = 0

COdd/δdd 2nd ∞ ∞ −∞ −∞ ∞ −∞ ∞ −∞ −∞ ∞ ∞ −∞ t + μ = 1.744 253 0.273 873
order

COdD/δdD 2nd ∞ ∞ ∞ −∞ ∞ −∞ ∞ −∞ ∞ ∞ ∞ −∞ t − μ − J = 1.744 253 0.273 873
order

CODd/δDd 2nd ∞ ∞ −∞ ∞ ∞ −∞ ∞ −∞ −∞ ∞ ∞ −∞ t + U + μ + P + Vw 0.273 873
order = 1.744 253

CODD/δDD 2nd ∞ ∞ ∞ ∞ ∞ −∞ ∞ ∞ −∞ ∞ ∞ ∞ t − U − μ − J − L − P 0.273 873
order −2Vn − Vw + 2Q + 4R = 0

COdd/COdD 2nd ∞ ∞ −∞ −∞ ∞ −∞ ∞ −∞ −∞ ∞ ∞ −∞ 2μ + J = 0 1.420 396
order

CODd/CODD 2nd ∞ ∞ −∞ ∞ ∞ −∞ ∞ −∞ ∞ ∞ ∞ −∞ 2U + 2μ + J + L + 2P 1.420 396
order +2Vn + 2Vw − 2Q − 4R = 0

where Tij is a local operator that switches the conduction elec-
tron states of sites i and j : Tij |wini,wjnj 〉 = u|winj ,wjni〉
with u = 1 for ni + nj < 2 and u = −1 otherwise. When Tik

is applied, further below, to three consecutive sites i, j , k,
Tik|wini,wjnj ,wknk〉 = u|wink,wjnj ,wkni〉 with u = 1 for
ni + nj + nk < 2 and u = −1 otherwise.

To extract the renormalization-group recursion relations,
we consider the matrix elements γp,p̄ ≡ 〈φp|e−β ′H′

i,k |φp̄〉. With
γ9,9 = γ5,5, γ10,10 = γ6,6, γ11,11 = γ7,7, and γ12,12 = γ8,8, 12
out of 16 diagonal elements are independent and, with γ10,11 =
γ11,10 = −γ7,6 = −γ6,7, only one of the four off-diagonal
elements is independent, summing up to 13 independent
matrix elements. Thus we obtain the renormalized interaction
constants in terms of {γ }, defining γp ≡ γp,p for the diagonal
elements and γ0 ≡ γ6,7 for the only independent off-diagonal
element

t ′ = 1

2
ln

γ2

γ3
, U ′ = ln

γ1γ6γ0

γ2γ5
, μ′ = 1

2
ln

γ2γ3

γ 2
1

,

ν ′ = 1

2
ln

γ2γ
2
5 γ7

γ 2
1 γ3γ6

, J ′ = ln
γ1γ4

γ2γ3
,

K ′ = 1

2
ln

γ 2
1 γ3γ

2
6 γ 2

13γ15

γ2γ
4
5 γ 2

7 γ14
, L′ = ln

γ1γ4γ
2
6 γ 2

7 γ13γ16

γ2γ3γ
2
5 γ 2

8 γ14γ15
, (9)

P ′ = ln
γ1γ6

γ2γ5γ0
, V ′

n = ln
γ2γ3γ5γ8

γ1γ4γ6γ7
, V ′

w = ln
γ2γ

2
5 γ14

γ1γ
2
6 γ13

,

Q′ = 1

2
ln

γ2γ
2
7 γ14

γ3γ
2
6 γ15

, R′ = 1

2
ln

γ3γ6

γ2γ7
, G′ = ln γ1.

The matrix elements {γ } of the exponentiated renormalized
Hamiltonian are connected, by Eq. (7), to the matrix elements,
ηq,q̄ ≡ 〈ψq |e−βHi,j −βHj,k |ψq̄〉 of the exponentiated unrenor-
malized Hamiltonian,

γ0 = η12,18 + η21,27 + η36,42 + η45,51,

γ1 = η1 + η3 + η10 + η16,

γ2 = η3 + η7 + η13 + η28,
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FIG. 2. Renormalization-group flow basins of the t = 0 classical
submodel, in the chemical potentials (upper panel) and densities
(lower panel) of the localized and conduction electrons. In phase
subscripts throughout this paper, the first and second subscripts
respectively describe localized and conduction electron densities, as
dilute (d) or dense (D). The dashed lines are not phase transitions,
but smooth changes between the four different density regions of the
disordered (δ) phase.
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FIG. 3. Constant t/|U | cross sections of the phase diagram for interaction |U | = 0.1, in terms of the chemical potentials (upper panels)
and densities (lower panels) of the localized and conduction electrons. In phase subscripts throughout this paper, the first and second subscripts
respectively describe localized and conduction electron densities, as dilute (d) or dense (D). The full lines are second-order phase transitions. The
dashed lines are not phase transitions, but smooth changes between the different density regions of the disordered (δ) phase. The charge-ordered
phases are denoted by CO. Details are shown in Fig. 4. Thus, for low values of the interaction, all phase boundaries are second order and there
is no phase coexistence.

γ3 = η4 + η5 + η19 + η22,

γ4 = η6 + η8 + η25 + η31,

γ5 = η9 + η15 + η33 + η39,

γ6 = η12 + η27 + η36 + η51, (10)

γ7 = η18 + η21 + η42 + η45,

γ8 = η24 + η30 + η48 + η54,

γ13 = η34 + η40 + η57 + η59,

γ14 = η37 + η52 + η58 + η63,

γ15 = η43 + η46 + η60 + η61,

γ16 = η49 + η55 + η62 + η64.

The matrix elements ηq,q̄ can be obtained in terms of the
unrenormalized interactions via exponentiating the unrenor-
malized Hamiltonian matrix whose elements are given in
Appendix B.

B. Renormalization-group transformation in d > 1

Equations (9) and (10), together with Appendix B,
constitute the renormalization-group recursion relations

for d = 1, in the form �K ′ = R( �K), where �K =
(t,U,μ,ν,J,K,L,P,Vn,Vw,Q,R,G). To generalize to higher
dimension d > 1, we use the Migdal-Kadanoff procedure,75,76

�K ′ = bd−1R( �K), (11)

where b = 2 is the rescaling factor and R is the
renormalization-group transformation in d = 1 for the in-
teraction constants vector �K . This procedure is exact for
d-dimensional hierarchical lattices77–79 and a very good
approximation for hypercubic lattices for obtaining complex
phase diagrams.

Each phase in the phase diagram has its own (stable) fixed
point(s), which is called a phase sink (Table III). All points
within a phase flow to the sink(s) of that phase under successive
renormalization-group transformations. Phase boundaries also
have their own (unstable) fixed points (Table IV), where
the relevant exponent analysis gives the order of the phase
transition. Thus, the repartition of the renormalization-group
flows determine the phase diagram in thermodynamic-field
space. Matrix multiplications, along the renormalization-
group trajectory, with the derivative matrix of the recursion
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FIG. 4. Zoomed portion of Fig. 3, for the |U | = 0.1, t/|U | = 10
phase diagram.

relations relate the expectation values at the starting point of
the trajectory to the expectations values at the phase sink.
The latter are determined (Table III) by the left eigenvector,
with eigenvalue bd , of the recursion matrix at the sink, where
b = 2 is the length-rescaling factor of the renormalization-
group transformation. When the expectation values are thus

calculated for the points of the phase boundary, the phase
diagram in density space is determined.80,81

IV. GLOBAL PHASE DIAGRAM OF SFKM

The global phase diagram of SFKM is calculated, as
described above, for the whole range of the interactions
(t , U , ν, μ). The global phase diagram is thus four-
dimensional. 1/t can be taken as the temperature variable. We
present the calculated global phase diagram in four subsec-
tions: The first subsection gives the t = 0 classical submodel.
The other subsections are devoted to small, intermediate, and
large values of the interaction |U |. We present constant t/|U |
cross sections in terms of the localized and conduction electron
chemical potentials ν/|U | and μ/|U | and in terms of the
localized and conduction electron densities 〈wi〉 and 〈ni〉.

A. Classical submodel t = 0

Setting the quantum effect to zero, t = 0, yields the classical
submodel, closed under the renormalization-group flows. The
global flow basins in ν/|U | and μ/|U | are the same for all U ,
given in Fig. 2. There exist four regions of a disordered phase
within this submodel, which are localized-dilute-conduction-
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FIG. 5. Constant t/|U | cross sections of the phase diagram for interaction |U | = 1, in terms of the chemical potentials (upper panels)
and densities (lower panels) of the localized and conduction electrons. The dotted and thick full lines are respectively first- and second-order
phase transitions. Phase separation (i.e., phase coexistence) occurs inside the dotted boundaries, as identified in the figure. The details of the
coexistence region in the lower-right panel are given in Fig. 6. The quadruple point Q tie line is shown as the thin straight line. The dashed
lines are not phase transitions, but smooth changes between the different density regions of the disordered (δ) phase.
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dilute, localized-dilute-conduction-dense, localized-dense-
conduction-dilute, and localized-dense-conduction-dense re-
gions, denoted by δdd, δdD, δDd, and δDD, respectively. [In phase
subscripts throughout this paper, the first and second subscripts
respectively describe localized and conduction electron densi-
ties, as dilute (d) or dense (D).] In the renormalization-group
flows, each δ region is the basin of attraction of its own sink.
The dashed lines between the different regions are not phase
boundaries, but smooth transitions (such as the supercritical
liquid-gas or up-magnetized-down-magnetized transitions),
which are controlled by zero-coupling null fixed points.82

It should be noted that the Suzuki-Takano and Migdal-
Kadanoff methods are actually exact for this classical sub-
model, and yield exactly the same picture as obtained in
Ref. 83.

B. Small |U| regime

In this subsection, we present our results for |U | = 0.1,
representative of the weak-interaction regime. The t = 0 phase
diagram of Fig. 2 evolves under the introduction of quantum
effects via a nonzero hopping strength t . It should be noted
that increasing the dimensionless Hamiltonian parameter t is
equivalent to reducing temperature, as in all renormalization-
group studies. The first effect is the decrease and elimination
(left panels of Fig. 3) of the (smooth) passage between the δDd

and δdD regions. With this elimination, all four regions meet at
ν/|U | = μ/|U | = 0.5 and 〈wi〉 = 〈ni〉 = 0.5, the half filling
of both localized and conduction electrons. With increasing
t (equivalent to decreasing temperature), four new, charge-
ordered (CO) phases emerge at t � 0.6. The CO phases occur
at and near half filling of conduction electrons for the entire
range of localized electron densities. The CO phases grow with
increasing t (decreasing temperature) until saturation at high
t (right panels of Fig. 3).

All of the new CO phases have nonzero hopping density
〈c†i cj + c

†
j ci〉 = −a = −0.629 050 at their phase sinks. The

expectation values at the sinks are evaluated as the left
eigenvector of the recursion matrix with eigenvalue bd .80 In the
CO phases, the hopping strength t diverges to infinity under
repeated renormalization-group transformations (whereas in
the δ phases, t vanishes under repeated renormalization-group
transformations). The localized electron density is 〈wi +
wj 〉 = 0 at the sinks of COdd and COdD, while 〈wi + wj 〉 = 2
at the sinks of CODd and CODD, which throughout the
corresponding phases calculationally translates80 as low (d)
and high (D) localized electron densities, respectively. Recall
that on phase labels (CO and δ) throughout this paper, the
first and second subscripts respectively describe localized and
conduction electron densities.

The conduction electron density is 〈ni + nj 〉 = a =
0.629050 at the sinks of COdd and CODd, while 〈ni + nj 〉 =
2 − a = 1.370 950 at the sinks of COdD and CODD. The
nearest-neighbor conduction electron number correlation is
〈ninj 〉 = 0 at the sinks of COdd and CODd, while 〈ninj 〉 = 1 −
a = 0.370 950 at the sinks of COdD and CODD. Consequently,
for conduction electrons, if a given site is occupied, its
nearest-neighbor site is empty at the sinks of COdd and CODd.
The COdD and CODD phases are connected to the COdd and
CODd phases by particle-hole interchange on the conduction
electrons. Thus, in the CO phases, the lattice can be divided

into two sublattices with different electron densities. The
behavior at the CO sinks therefore indicates charge-ordered
phases at finite temperatures, as also previously seen in
ground-state studies.61,84,85 Note that this charge ordering is
a purely quantum mechanical effect caused by hopping, since
the SFKM Hamiltonian Eq. (1) studied here does not contain
an interaction between electrons at different sites.

In the small |U | regime, all phase boundaries around the CO
phases are second order. As seen in the expanded Fig. 4, all four
CO phases and all four regions of the δ phase (as narrow slivers)
meet at ν/|U | = μ/|U | = 0.5 and 〈wi〉 = 〈ni〉 = 0.5, the half-
filling point of both localized and conduction electrons. All
characteristics of the sinks and boundary fixed points are given
in Tables III and IV.

C. Intermediate |U| regime

In this subsection, the phase diagram for |U | = 1, repre-
sentative of the intermediate-interaction regime, is presented.
Figure 5 gives constant t/|U | cross sections. First-order phase
boundaries appear in the central region of the phase diagram,
at and near the half filling of both localized and conduction
electrons.

For low values of t (left panels of Fig. 5), equivalent to
high temperatures, two first-order phase boundaries, bounded
by four critical points C, pinch at a quadruple point Q. In the
(left-lower) density-density phase diagram, four phase sepa-
ration (coexistence) regions mark the first-order phase tran-
sitions. Inside these regions, coexistence (phase separation)
occurs between the phases on each side of these regions, as
indicated on the figure. The tie line of the quadruple point is
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FIG. 6. Zoomed portion of Fig. 5, for the |U | = 1, t/|U | = 10
phase diagram. The coexistence tie lines of the critical endpoints E
and of the double critical endpoints E2 are shown. Inside each region
delimited by dotted lines and the endpoint tie lines, phase separation
(i.e., phase coexistence) occurs between phases as identified on this
figure.
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shown as a thin straight line. All four δ phases coexist (phase
separate) on this line.

As t increases (temperature decreases), the four charge-
ordered CO phases appear again at t � 0.6, as seen in the
leftmost panels of Fig. 1. The CO phases again occur at
and near half filling of conduction electrons for the entire
range of localized electron densities. In the right panels of
Fig. 5, the second-order transition lines bounding the CO
phases terminate at two critical endpoints E82 and two double
critical endpoints E2 on the first-order line in the central region
(zoomed in Fig. 6). Thus, first-order transitions and phase
separation occur between the pairs of δDd and δdd,δDd and
COdd,CODd and COdD,CODD and δdD, δDD and δdD phases, as
indicated on Fig. 6, at and near the half filling of both localized
and conduction electrons.

The evolution of the phase diagrams between right and left
panels of Fig. 5 are shown in Fig. 1.

D. Large |U| regime

The evolution of the global phase diagram, as the interaction
strength is increased, is seen in the phase diagrams in Fig. 7.
The CO phases emerge again at t � 0.6. With increasing t
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FIG. 8. Zoomed portions of Fig. 7, for the |U | = 1.845 628,

t/|U | = 5.418 21 phase diagram.

(decreasing temperature), the CO phases grow, until saturation
seen in Fig. 7. The topology of the phase diagram with five
phases stays the same for all t � 0.6.

The constant t/|U | cross sections of the phase diagram are
given in Fig. 7. For U = 1.5, the double critical endpoints E2

have split into pairs of simple critical endpoints E, resulting in
six separate critical endpoints. For U = 1.845 628 (Fig. 8), the
inner two critical endpoints have merged into a single double
critical endpoint. For U = 10, the double critical endpoint
has split into two critical endpoints and the critical lines in
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boundary exhibits, from the left to right, a sequence of the maximum, minimum, maximum, minimum points; the four corresponding tie lines are
also shown in the lower-right density panel. These tie lines abut, on one end, very near maxima and minima of the lower and upper branches of
the coexistence boundaries. The dashed lines are not phase transitions, but smooth changes between the different density regions of the δ phase.
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FIG. 9. Two zoomed portions of Fig. 7, for the |U | = 10, t/|U | =
1 phase diagram.

the low-density and high-density localized electrons regions
have disconnected from each other. In this strong interaction
limit, the homogenous (non-phase-separated) charge-ordered
phases occur again at and near half filling of conduction
electrons, but at the low- or high-density limit of the localized
electrons. Away from these limits, the charge-ordered phases
occur in coexistence (phase separated from) the disordered
phases. At and near the half filling of both localized and
conduction electrons, the coexistence of the disordered phases
δDd and δdD occurs. Two sets of three critical lines terminate
in separate endpoints, as seen in the zoomed Fig. 9. In this
case, a characteristic shape of the density phase diagrams,
which we dub chimaera coexistence, emerges. In the chimaera
phase diagram, coexistence can be found for essentially the
entire range of conduction electrons densities and for most
of the range of localized electron densities. In the upper-right
chemical-potential panel of Fig. 7, the first-order phase bound-
ary exhibits, from the left to right, a sequence of the maximum,
minimum, maximum, minimum points; the four corresponding
tie lines are also shown in the lower-right density panel. These
tie lines abut, on one end, very near maxima and minima of
the lower and upper branches of the coexistence boundaries,
thereby underpinning the distinctive chimaera topology.

V. CONCLUSION

With this research, we have obtained the global phase
diagram of the d = 3 SFKM, which exhibits a fairly rich
collection of phase diagram topologies: For the t = 0 classical
submodel, we have obtained disordered (δ) regions, dilute and
dense separately for localized and conduction electrons, but
no phase transition between them. The repartition of these
regions, delimited by renormalization-group flows, quantita-
tively stays the same for the whole |U | range and is exactly as
obtained in Ref. 83. For the whole |U | range and 0 < t � 0.6,
the classical submodel phase diagram is perturbed in such a
way that regions δdd and δDD intercede between regions δdD

and δDd, resulting in the shrinking and disappearing of the δdD

to δDd passage.
All δ regions have vanishing hopping density at their

corresponding sinks. For the whole |U | range, upon increasing
t (lowering temperature), at t � 0.6 four new phases (CO)
emerge with nonzero hopping density of −a = −0.629 050 at
their sinks. These CO phases are also either dilute or dense,
separately, in the localized and conduction electrons (COdd,
COdD, CODd, and CODD) and are all charge ordered in the
conduction electrons, a wholly quantum mechanical effect.

In these CO phases the bipartite lattice is divided into two
sublattices of alternating electron density. The CO phases
occur at or near the half filling of conduction electrons. The
phase diagrams with all five phases for t � 0.6 exhibit different
topologies, for the small, intermediate, and large |U | regimes.

For the small |U | (weak-interaction) regime, all phase
boundaries are second order. All five phases meet at ν/|U | =
μ/|U | = 0.5 and 〈wi〉 = 〈ni〉 = 0.5, the half-filling point of
both localized and conduction electrons.

For the intermediate |U | (intermediate-interaction) regime,
a first-order phase boundary emerges in the central region
of the phase diagram. This first-order boundary is centered
at ν/|U | = μ/|U | = 0.5 and is bounded by two critical
points C. The second-order lines bounding the CO phases
terminate at critical endpoints E and double critical endpoints
E2 on the first-order boundary. Due to this first-order phase
transition at and near the half filling of both localized and
conduction electrons, a rich variety of phase separation (phase
coexistence) occurs, as indicated on Figs. 1, 5, 6, and 7.

For the large |U | (strong-interaction) regime, as |U | is
increased, the critical endpoints pass through each other by
merging and unmerging as double critical endpoints. For large
|U |, the CODd and CODD phases are detached from the COdd

and COdD phases, forming two separate bundles, at high and
low densities of localized electrons respectively. First-order
transitions occur between the variously dense and dilute δ. The
global phase diagram underpinning all of these cross sections
is decidedly quite complex.
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APPENDIX A: BLOCK-DIAGONAL
RENORMALIZED HAMILTONIAN

The matrix elements of the block-diagonal renormalized
two-site Hamiltonian in the {|φp〉} basis are given in Eq. A1,
where 〈φp| − β ′H′

i,k|φp〉 = εp + G′ for the 12 independent
diagonal elements and 〈φ6| − β ′H′

i,k|φ7〉 = ε0 for the only
independent off-diagonal element

ε1 = 0, ε2 = t ′ + μ′, ε3 = −t ′ + μ′, ε4 = 2μ′ + J ′,
ε5 = ν ′ + R′, ε6 = t ′ + U ′/2 + μ′ + ν ′ + P ′/2 + R′,
ε7 = −t ′ + U ′/2 + μ′ + ν ′ + P ′/2 − R′,
ε8 = U ′ + 2μ′ + ν ′ + J ′ + P ′ + V ′

n − R′,
ε13 = 2ν ′ + K ′ + Q′ + 2R′,
ε14 = t ′ + U ′ + μ′ + 2ν ′ + K ′ + P ′ + V ′

w + Q′ + 2R′,
ε15 = −t ′ + U ′ + μ′ + 2ν ′ + K ′ + P ′ + V ′

w − Q′ − 2R′,
ε16 = 2(U ′ + μ′ + ν ′) + J ′ + K ′ + L′

+ 2(P ′ + V ′
n + V ′

w) − Q′ − 2R′,
ε0 = (U ′ − P ′)/2. (A1)
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APPENDIX B: BLOCK-DIAGONAL UNRENORMALIZED HAMILTONIAN

The matrix elements of the block-diagonal unrenormalized three-site Hamiltonian in the {|ψq〉} basis are given in Eq. (B1), where
〈ψq | − βHi,j − βHj,k|ψq〉 = εq + 2G for the diagonal elements and 〈ψq | − βHi,j − βHj,k|ψq̄〉 = εq,q̄ for the off-diagonal
elements

ε1 = 0, ε2 = ε3 = ε4 = ε6/2 = μ, ε5 = ε7 = 2μ + J,

ε8 = 3μ + 2J, ε9 = ε34/2 = ν + R, ε10 = ν + 2R,

ε12 = ε18 = U/2 + μ + ν + R/2,

ε13 = ε19 = μ + ν + P + R, ε15 = μ + ν + P,

ε16 = ε49/2 = U + μ + ν,

ε21 = U/2 + 2μ + ν/2 + J + P + (Vn − R)/2,

ε22 = ε28 = U + 2μ + ν + J + P + Vn − R,

ε24 = U + 2μ + ν, ε25 = 2μ + ν + 2P,

ε27 = U/2 + 2μ + ν + J + P + (Vn − R)/2,

ε30 = U + 3μ + ν + 2J + P + Vn − R,

ε31 = U + 3μ + ν + 2(J + P + Vn − R),

ε33 = 2ν + K + Q + 3R,

ε36 = ε42 = U/2 + μ + 2ν + K + P + (Vw + Q + 3R)/2,

ε37 = ε43 = U + μ + 2ν + R,

ε39 = U + μ + 2ν + K + P + Vw, ε40 = μ + 2(ν + P ),

ε45 = ε51 = 3U/2 + 2(μ + ν) + J + K + L/2 + 2P + 3(Vn + Vw)/2 − (Q + 3R)/2,

ε46 = ε52 = U + 2(μ + ν) + J + 2P + Vn − R,

ε48 = U + 2(μ + ν) + K + 2P + Vw,

ε54 = 2U + 3μ + 2(ν + J ) + K + L + 3(P + Vn) + 2Vw − Q − 3R,

ε55 = 2U + 3μ + 2(ν + J + P + Vn − R),

ε57 = 3ν + 2(K + Q) + 4R,

ε58 = ε60 = U + μ + 3ν + 2K + P + Vw + Q + 2R,

ε59 = U + μ + 3ν + 2(K + P + Vw),

ε61 = ε63 = 2(U + μ) + 3ν + J + 2K + L + 3P + 2Vn + 3Vw − Q − 2R,

ε62 = 2(U + μ) + 3ν + 2(K + P + Vw),

ε64 = 3(U + μ + ν) + 2(J + K + L) + 4(P + Vn + Vw − Q − R),

ε2,3 = ε6,7 =
√

2t, ε12,15 = ε24,27 = (2t + R)/
√

2,

ε12,18 = (U − R)/2,

ε13,16 = ε25,28 = ε37,40 = ε49,52 =
√

2(t + R),

ε15,18 = −ε21,24 = R/
√

2, ε21,27 = (U + Vn − R)/2,

ε36,39 = ε48,51 = (2t + Q + 3R)/
√

2,

ε39,42 = −ε45,48 = (Q + R)/
√

2,

ε45,51 = (U + L + Vn + Vw − Q − R)/2,

ε58,59 = ε62,63 =
√

2(t + Q + 2R).

The matrix elements for the states connected by the exchange of the outer conduction electrons are obtained by multiplication with
the eigenvalues u of Tik . The matrix elements ηq,q̄ that enter the recursion relations via Eq. (10) are obtained by exponentiating
the block-diagonal Hamiltonian given here.
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23J. K. Freericks, B. K. Nikolić, and P. Miller, Int. J. Mod. Phys. B
16, 531 (2002).

24R. Allub and B. Alascio, Solid State Commun. 99, 613 (1996).
25R. Allub and B. Alascio, Phys. Rev. B 55, 14113 (1997).
26B. M. Letfulov and J. K. Freericks, Phys. Rev. B 64, 174409 (2001).
27T. V. Ramakrishnan, H. R. Krishnamurthy, S. R. Hassan, and

G. Venketeswara Pai, in Colossal Magnetoresistive Manganites,
edited by T. Chatterji (Kluwer Academic Publishers, Dordrecht,
2003), p. 417.

28H. J. Leder, Solid State Commun. 27, 579 (1978).
29J. M. Lawrence, P. S. Riseborough, and R. D. Parks, Rep. Prog.

Phys. 44, 1 (1981).
30W. Hanke and J. E. Hirsch, Phys. Rev. B 25, 6748 (1982).
31E. Baeck and G. Czycholl, Solid State Commun. 43, 89 (1982).
32S. H. Liu and K.-M. Ho, Phys. Rev. B 28, 4220 (1983).
33S. H. Liu and K.-M. Ho, Phys. Rev. B 30, 3039 (1984).
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