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In single-molecule laser optical tweezer (LOT) pulling experiments,
a protein or RNA is juxtaposed between DNA handles that are
attached to beads in optical traps. The LOT generates folding
trajectories under force in terms of time-dependent changes in the
distance between the beads. How to construct the full intrinsic
folding landscape (without the handles and beads) from the
measured time series is a major unsolved problem. By using
rigorous theoretical methods—which account for fluctuations of
the DNA handles, rotation of the optical beads, variations in ap-
plied tension due to finite trap stiffness, as well as environmental
noise and limited bandwidth of the apparatus—we provide a trac-
table method to derive intrinsic free-energy profiles. We validate
the method by showing that the exactly calculable intrinsic free-
energy profile for a generalized Rouse model, which mimics the
two-state behavior in nucleic acid hairpins, can be accurately
extracted from simulated time series in a LOT setup regardless
of the stiffness of the handles. We next apply the approach to
trajectories from coarse-grained LOT molecular simulations of
a coiled-coil protein based on the GCN4 leucine zipper and obtain
a free-energy landscape that is in quantitative agreement with
simulations performed without the beads and handles. Finally,
we extract the intrinsic free-energy landscape from experimental
LOT measurements for the leucine zipper.

The energy landscape perspective has provided a conceptual
framework to describe how RNA (1) and proteins (2–4) fold.

Some of the key theoretical predictions (5, 6), have been con-
firmed by experiments (7). More refined comparisons require
mapping the full folding landscape of biomolecules. Advances in
laser optical tweezer (LOT) experiments have been used to ob-
tain free-energy profiles as a function of the extension of bio-
molecules under tension (7–12).
The usefulness of the LOT technique, however, hinges on the

assumption that information about the fluctuating biomolecule
can be accurately recovered from the raw experimental data,
namely the time-dependent changes in the positions of the beads
in the optical traps, attached to the biomolecule by double-
stranded DNA (dsDNA) handles (Fig. 1). Thus, we only have
access to the intrinsic folding landscape of the biomolecule (in the
absence of handles and beads) indirectly through the bead–bead
separation along the force direction. Many extraneous factors,
such as fluctuations of the handles (13, 14), rotation of the beads,
and the varying applied tension due to finite trap stiffness, can
distort the intrinsic folding landscape. Moreover, the detectors
and electronic systems used in the data collection have finite re-
sponse times, leading to filtering of high-frequency components in
the signal (15). Ad hoc attempts have been made to account for
handle effects based on experimental estimates of stretched DNA
properties, using techniques similar to image deconvolution (8,
11, 16). Theory has been used to extract free-energy information
from nonequilibrium pulling experiments (17), and to determine
the intrinsic power spectrum of protein fluctuations (18) from
LOT data. However, to date there has been no comprehensive
theory to model and correct for all of the systematic instrumental
distortions of the underlying folding landscapes of proteins
and RNA.
How can one construct the intrinsic free-energy profile of

a biomolecule using the measured folding trajectories in the

presence of beads and handles [the total separation ztot(t) in Fig.
1 as a function of time t]? Here, we solve this problem using a
rigorous theoretical procedure. Besides ztot(t), the only inputs
needed in our theory are the bead radii, the trap strengths and
positions, and handle characteristics such as the contour length,
the persistence length, and the elastic stretch modulus. The out-
put is the intrinsic free energy as a function of the biomolecular
extension (zp in Fig. 1) in the constant force ensemble.
We validate our approach using two systems: (i) a generalized

Rouse model (GRM) hairpin (19), which has an analytically
solvable double-well energy landscape under force; and (ii) a
double-stranded coiled-coil protein based on the yeast tran-
scriptional factor GCN4 leucine zipper domain, whose folding
landscape was studied using a LOT experiment (11). We first use
coarse-grained molecular simulations to obtain the intrinsic free-
energy landscape of the isolated protein at a constant force. We
then simulate mechanical folding trajectories using the full LOT
setup, from which we quantitatively recover the intrinsic free-
energy landscape of GCN4, thus further establishing the efficacy
of our theory. Finally, we apply our theory to experimentally
generated data, and show that we can get reliable estimates for the
protein energy profile independent of the optical trap parameters.

Results
Theory for Constructing the Intrinsic Protein Folding Landscape from
Measurements. In a dual-beam optical tweezer setup (Fig. 1) the
protein is covalently connected to dsDNA handles that are at-
tached to glass or polystyrene beads in two optical traps. For
small displacements of the beads from the trap centers (20) the
trap potentials are harmonic, with strengths kx = kz ≡ ktrap along
the lateral plane, and a weaker axial strength ky = αktrap, where
α < 1 (21). For simplicity, we take both traps to have equal
strengths, although our method can be generalized to an asym-
metric setup. The trap centers are separated from each other
along the ẑ axis, with trap 1 at z = 0 and trap 2 at z = ztrap. As the
bead–handle–protein system fluctuates in equilibrium, the posi-
tions of the bead centers r1(t) and r2(t) vary in time. The ex-
perimentalist can collect a time series of the z components of the
bead positions z1(t) and z2(t). Denote the mean of each time
series as z1 and z2. We assume that the trap centers are suffi-
ciently far apart that the whole system is under tension, which
implies that the mean bead displacements are nonzero,
z1 = ztrap − z2 =F=ktrap > 0, where F is the mean tension along ẑ.
We focus on the case where there is no feedback mechanism to
maintain a constant force, so the instantaneous tension in the
system changes as the total end-to-end extension component
ztot(t) ≡ z2(t) − z1(t) (Fig. 1) varies. Although we choose one
particular passive setup, the theory can be adapted to other types
of passive optical tweezer systems (8, 20) where the force is
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approximately constant (in which case we could skip the trans-
formation into the constant-force ensemble described below).
The mean tension F, a measure of the overall force scale, can be
tuned at the start of the experiment by making the trap separa-
tion ztrap larger (leading to higher F) or smaller (leading to lower
F). Because F = ktrapðztrap − ztotÞ=2, the precise relationship be-
tween ztrap and F requires knowing the mean total extension ztot,
which depends among other things on the details of the energy
landscape. Hence, we cannot in general calculate beforehand
what F will be for a given ztrap. However, one of the advantages of
our approach is that we can combine data from different exper-
imental runs (each having a different ztrap and F) to accurately
construct the protein free-energy profile. This combination is
carried out through the weighted histogram analysis method
(WHAM) (22) (Supporting Information) in a spirit similar to
earlier work in the context of optical tweezers (23, 24). We first
solve the problem of obtaining the protein landscape based on
a single observed trajectory of bead-to-bead separations specified
as ztot as a function of t.
The key quantity in the construction procedure is Ptot(ztot), the

equilibrium probability distribution of ztot within the external trap
potential, which can be directly derived from the experimental time
series. The imperfect nature of themeasured data, due to noise and
low-pass filtering effects in the recording apparatus, will distort
Ptot(ztot), but we have developed a technique to model and ap-
proximately correct for these issues (Materials and Methods, FBS).
Once we have an experimental estimate for Ptot(ztot), the objective
is to find P~pðzp;F0Þ, the intrinsic distribution of the protein end-
to-end extension component zp at some constant force F0, whose
value we are free to choose. (Tilde notation denotes probabilities in
the constant-force ensemble.) The intrinsic protein free-energy
profile isF~pðzp;F0Þ= − kBT   lnP~pðzp;F0Þ. The procedure, obtained
from rigorous theoretical underpinnings described in detail in
SI Text, consists of two steps:

i) Transformation into the constant-force ensemble. Given
Ptot(ztot), we obtain the total system end-to-end distribution
at a constant F0 using

P~ totðztot;F0Þ=C−1eβF0ztot+1
4 βktrapðztrap − ztotÞ2PtotðztotÞ; [1]

where β = 1/kBT and C is a normalization constant. The equation
above applies in the case of a single experimental trajectory at
a particular trap separation ztrap.

ii) Extraction of the intrinsic protein distribution. In the constant-
force ensemble, P~tot =P~b *P~h *P~p *P~h *P~b, relates the total
end-to-end fluctuations P~totðztot;F0Þ to the end-to-end dis-
tributions for the individual components P~αðzα;F0Þ, where α
denotes bead (b), handle (h), or protein (p), and “*” is a 1D
convolution operator. For the beads, “end-to-end” refers to
the extension between the bead center and the handle at-
tachment point, projected along ẑ. In Fourier space the con-
volution has the form

P~ totðk;F0Þ=P~
2

bðk;F0ÞP
~ 2

hðk;F0ÞP
~

pðk;F0Þ
≡P~ bhðk;F0ÞP

~

pðk;F0Þ;
[2]

where P~αðk;F0Þ is the Fourier transform of P~αðzα;F0Þ. Here,
P~bh, which is the result of convolving all of the bead and handle
distributions, acts as the main point-spread function relating the
intrinsic protein distribution P~p to P~tot. Because P~bh can be
modeled from a theoretical description of the handles and beads,
we can solve for P~p using Eq. 2 and hence find F~p, the intrinsic
free-energy profile of the protein.
The derivation of the procedure (SI Text) shows the conditions

under which the two-step method works. The mathematical ap-
proximation underlying step i becomes exact if: (i) kx = ky = 0; or
(ii) the full 3D total system end-to-end probability is separable
into a product of distributions for longitudinal ðẑÞ and transverse
(x̂, ŷ) components. In general, condition (ii) is not physically
sensible (19). However, if ρtot is the typical length scale describing
transverse fluctuations, then condition (i) is approximately valid
when βktrapρ2tot � 1. If this condition breaks down, accurate
construction of the intrinsic energy landscape cannot be per-
formed without knowledge of the transverse behavior. In the
simulation and experimental results below, the force scales are
such that transverse fluctuations are small, ρtot ∼Oð1 nmÞ, so to
ensure condition (i) is met, we require that ktrap � kBT=ρ2tot = 4:1
pN/nm at T = 298 K. We use the experimental value ktrap = 0.25
pN/nm in our test cases (11), which is well under the upper limit.
In principle, one can choose any F0, the force value of the con-
stant-force ensemble where we carry out the analysis. In practice,
F0 should be chosen from among the range of forces that is
sampled in equilibrium during the actual experiment, because this
will minimize statistical errors in the final constructed landscape.
For example, setting F0 =F, the mean tension, is a reasona-
ble choice.
Step ii depends on knowledge of P~bhðk;F0Þ, and thus the in-

dividual constant-force distributions of the beads and the han-
dles in Fourier space. The point-spread function is characterized
by the bead radius Rb, the handle contour length L, the handle
persistence length lp, and the handle elastic stretching modulus
γ. In P~h we also include the covalent linkers which attach the
handles to the beads and protein, giving two additional param-
eters: the linker stiffness κ and length ℓ. Using the extensible
semiflexible chain as a model for the handles, we exploit an exact
mapping between this model and the propagator for the motion
of a quantum particle on the surface of a unit sphere (25) to
calculate the handle Fourier-space distribution to arbitrary nu-
merical precision. Together with analytical results for the bead
and linker distributions, we can directly solve for P~bhðk;F0Þ. To
verify that the analytical model for the point-spread function can
accurately describe handle/bead fluctuations over a range of
forces, we have analyzed data from control experiments on a
system involving only the dsDNA handles attached to beads,
where Ptot = Pbh (SI Text). The theory simultaneously fits results
for several experimental quantities measured on the same sys-
tem: the distributions P~bh derived from three different trap
separations, corresponding to mean forces F0 = 9.4−12.7 pN,
and a force-extension curve. The accuracy of the model P~bh is
∼1–3%, within the experimental error margins.

Robustness of the Theory Validated by Application to an Exactly
Solvable Model. We first apply the theory to a problem for
which the intrinsic free-energy profiles at arbitrary force are
known exactly. The GRM hairpin (SI Text) is a two-state folder
whose full 3D equilibrium end-to-end distributions are analyti-
cally solvable. A representative GRM distribution P~GRM at F0 =
11.9 pN is plotted in Fig. 2A. The upper part shows a projection
onto the ðρ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2

p
; zÞ plane, because P~GRM is cylindrically

symmetric, whereas the lower part shows the further projection
onto the z coordinate. The two peaks correspond to the native

Fig. 1. Dual-beam optical tweezer setup for studying the equilibrium
folding landscape of a single protein molecule under force.

Hinczewski et al. PNAS | March 19, 2013 | vol. 110 | no. 12 | 4501

CH
EM

IS
TR

Y
BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1214051110/-/DCSupplemental/pnas.201214051SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1214051110/-/DCSupplemental/pnas.201214051SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1214051110/-/DCSupplemental/pnas.201214051SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1214051110/-/DCSupplemental/pnas.201214051SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1214051110/-/DCSupplemental/pnas.201214051SI.pdf?targetid=nameddest=STXT


(N) state at small z, and the unfolded (U) state at large z. To
model the optical tweezer system, we add handles and beads to
the GRM hairpin, whose probabilities P~h and P~b (including
transverse fluctuations) are illustrated in Fig. 2 B and C. The full
3D behavior is derived in an analogous manner to the theory
mentioned above for the 1D Fourier-space distribution
P~bhðk;F0Þ of the beads/handles; the only difference is that the
transverse degrees of freedom are not integrated out. The 3D
convolution of the system components, plus the optical trap
contribution, gives the total distribution Ptot in Fig. 2D. The
bead, handle, linker, and trap parameters are listed in Table S1.
From Ptot one can calculate the mean total z extension and
the mean tension, which in this case are ztot = 1; 199 nm,
F = ktrapðztrap − ztotÞ=2= 11:9 pN.
The ẑ-probability projection in Fig. 2D (Lower) is the in-

formation accessible in an experiment, and the computation of
the intrinsic distribution in Fig. 2A (Lower) is the ultimate goal
of the construction procedure. Comparing A and D, two effects
of the apparatus are visible: the GRM peaks have been partially
blurred into each other, and the transverse (ρ) fluctuations have
been enhanced. The handles provide the dominant contribution
to both these effects.
Fig. 2 E–G illustrates the construction procedure for the GRM

optical tweezer system. E corresponds to step i, with a trans-
formation of the distribution Ptot (whose varying force scale is
shown along the top axis) into P~tot at constant force F0 = 11.9
pN. Step ii uses the exact P~bh, shown in real space in F, and
produces the intrinsic distribution P~GRM, drawn as a solid line
in G. The agreement with the exact analytical result (dashed
line) is extremely close, with a median error of 3% over the range
shown. This deviation is due to the approximation in step i,
discussed above, as well as the numerical implementation of the
deconvolution procedure.
As shown in our previous study (19), the smaller the ratio lp/L

for the handles, the more the features of the protein energy
landscape get blurred by the handle fluctuations. Because the
experimentally measured total distribution always distorts to
some extent the intrinsic protein free-energy profile due to the
finite duration and sampling of the system trajectory, more
flexible handles will exacerbate the signal-to-noise problem. To
illustrate this effect, we performed Brownian dynamics simu-
lations of the GRM in the optical tweezer setup, with handles
modeled as extensible, semiflexible bead–spring chains (SI Text).
In Fig. 3A we compare the free energy F tot = −kB T ln Ptot for a
fixed L = 100 nm and a varying lp/L, derived from the simulation
trajectories, and the exact intrinsic GRM result F~GRM = − kBT
lnP~GRM at F0. When the handles are very flexible, with lp/L =

0.02, the energy barrier between the native and unfolded states
almost entirely disappears in F tot, with the noise making the
precise barrier shape difficult to resolve. Remarkably, even with
this extreme level of distortion, using our theory we still recover
a reasonable estimate of the intrinsic landscape (Fig. 3B). For
each F tot in Fig. 3A, Fig. 3B compares the result of the con-
struction procedure and the exact answer for F~GRM. Clearly
some information is lost as lp/L becomes smaller, because the
lp/L = 0.02 system does not yield as accurate a result as the ones
with stiffer handles. However, in all cases the basic features of
the exact F~GRM are reproduced. Thus, the method works re-
markably well over a wide range of handle parameters. This
conclusion is generally valid even when other parameters are
varied (see Fig. S3 in SI Text for tests at various F0 and ktrap).
The excellent agreement between the constructed and intrinsic
free-energy profiles for the exactly solvable GRM hairpin over
a wide range of handle and trap experimental variables estab-
lishes the robustness of the theory.

Intrinsic Folding Landscape of a Simulated Leucine Zipper. To dem-
onstrate that the theory can be used to produce equilibrium in-
trinsic free-energy profiles with multiple states from mechanical
folding trajectories, we performed simulations of a protein in an
optical tweezer setup. The simulations were designed to mirror a
single-molecule experiment (11). To this end we studied a coiled-
coil, LZ26 (26), based on three repeats of the leucine zipper
domain from the yeast transcriptional factor GCN4 (27)
(Materials and Methods). The simple linear unzipping of the
two strands of LZ26 allows us to map the end-to-end extension
to the protein configuration. Furthermore, the energy hetero-
geneity of the native bonds that form the ‘‘teeth’’ of the zipper
leads to a nontrivial folding landscape with at least two in-
termediate states (11, 26, 28).
The LZ26 N structure in Fig. 4 (from a simulation snapshot),

shows two alpha-helical strands running from the N terminus at
the bottom to the C terminus at the top. In the experiment
a handle is attached to the N terminus of each strand, and this is
where the strands begin to unzip under applied force. To prevent
complete strand separation, the C termini are cross-linked
through a disulfide bridge between two cysteine residues. Each
alpha-helix coil consists of a series of seven-residue heptad
repeats, with positions labeled a through g. For the leucine
zipper the a and d positions are the teeth, consisting of mostly
hydrophobic residues (valine and leucine) which have strong
noncovalent interactions with their counterparts on the other
strand. The exceptions to the hydrophobic pattern are the three
hydrophilic asparagine residues in a position on each strand

A B C D

E F G

Fig. 2. GRM hairpin in an optical tweezer setup.
First row shows the exact end-to-end distributions
along ẑ for each component type in the system: (A)
GRM, (B) dsDNA handle, (C) polystyrene bead.
Handle, bead, and trap parameters are listed in
Table S1 (GRM column). (Upper) Probabilities pro-
jected onto cylindrical coordinates ðρ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2

p
; zÞ.

(Lower) Projection onto z alone. (D) Result for the
total system end-to-end distribution Ptot derived by
convolving the component probabilities and ac-
counting for the optical traps. (E–G) Construction of
the original GRM distribution P~GRM starting from
Ptot. (E) Ptot (purple) and P~tot (blue) as a function of
z on the bottom axis, measured relative to z, the
average extension for each distribution. For Ptot,
the upper axis shows the z range translated into the
corresponding trap forces F. After removing the
trap effects, P~tot is the distribution for constant
force F0 = 11.9 pN. (F) P~bh, describing the total
probability at F0 of fluctuations resulting from both
handles and the rotation of the beads. (G) Con-
structed solution for P~GRM (solid line), obtained by numerically inverting the convolution P~tot =P~bh *P~GRM. Exact analytical result for P~GRM is shown as
a dashed line; zN is the position of the N peak.
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(marked in blue in the structure snapshots in Fig. 4). As has been
seen experimentally (11, 26) (and shown below through simu-
lations), the weaker interaction of these asparagine pairs is
crucial in determining the properties of the intermediate folding
states.
In analyzing the LZ26 leucine zipper system, we performed

coarse-grained simulations using the self-organized polymer
(SOP) model (29) (full details in SI Text, with parameters
summarized in Table S1). The intrinsic free-energy profile
F~p = − kBT   ln  P~p at F0 = 12.3 pN in Fig. 4A has four prominent
wells in F~p as a function of zp corresponding to four stages in the
progressive unzipping of LZ26. At F0 = 12.3 pN all of the states
are populated, and the system fluctuates in equilibrium between
the wells. The transition barrier between N and I1 exhibits
a shallow dip that may correspond to an additional, very tran-
siently populated intermediate. Because this dip is much smaller
than kBT, we do not count it as a distinct state.
Adding the optical tweezer apparatus to the SOP simulation

significantly distorts the measured probability distributions. In
the first row of Fig. 5 sample simulation trajectory fragments are
shown both for the protein-only case (Fig. 5A) at constant force
F0 = 12.3 pN, and within the full optical tweezer system (Fig. 5C)
with ztrap = 503 nm. For the latter case we plot both ztot(t)
(purple) and zp(t) (gray), allowing us to see how the bead sepa-
ration tracks changes in the protein extension. The probability
distributions P~p and Ptot are plotted in Fig. 5 B and D, re-
spectively. In Fig. 5E, the distribution Ptot within the optical
tweezer system is plotted for ztrap = 503 nm. Although we only
illustrate this particular ztrap value, ∼260 trajectories are gener-
ated at different ztrap and combined together using WHAM (22)
(SI Text) to produce a single P~tot at a constant force F0 = 12.3 pN
(Fig. 5E). We can then use our theoretical method to recover the
protein free energy F~p (Fig. 5F). Despite numerical errors due
to limited statistical sampling (both in the protein-only and total
system runs), there is remarkable agreement between the con-
structed result and F~p derived from protein-only simulations.

This is particularly striking given that the total system free energy
F tot(ztot) = −kBT ln Ptot(ztot) (Fig. 5F), shows that handles/beads
blur the energy landscape, reducing the energy barriers to a de-
gree that the N state is difficult to resolve. The signature of N in
F tot(ztot) is a slight change in the curvature at higher energies on
the left of the I1 well. Nevertheless, we still recover a basin of
attraction representing the N state in the constructed F~p. The
results in Fig. 5 provide a self-consistency check of the method
for a system with multiple intermediates.

Folding Landscape of the Leucine Zipper from Experimental Trajec-
tories. As a final test of the efficacy of the theory we used the
experimental time series data (11) to obtain F~p. The data
consist of two independent runs with the LZ26 leucine zipper,
using the same handle/bead parameters for each run (Table S1)
but at different trap separations ztrap. We project the decon-
volved landscape from each trajectory onto the midpoint force F0
where the two most populated states (I1 and U) have equal
probabilities in P~p. The values of F0 derived from the two runs
are the same within error bounds: 12.3 ± 0.9 and 12.1 ± 0.9 pN.
The detailed deconvolution steps are shown for one run in the
last row of Fig. 5. The intrinsic free-energy profile F~p is shown
for both runs in Fig. 5H (solid and dotted blue curves, re-
spectively). Accounting for error due to finite trajectory length
and uncertainties in the apparatus parameters, the median total
uncertainty in each of the reconstructed landscapes is about 0.4
kBT in the z range shown (see SI Text for full error analysis). The
landscapes from the two independent runs have a median dif-
ference of 0.3 kBT, and hence the method gives consistent results
between runs, up to a small experimental uncertainty, an im-
portant test of its practical utility. The reproducibility of F~p is
a testament to the stability of the dual optical tweezer setup.
Each trajectory lasted for more than 100 s, and thus collected
∼(102−105) of the various types of transitions between protein
states (the slowest transition, U → I2, occurred on time scales of
0.4–0.6 s).

A B CFig. 3. Effects of handle characteristics on the free-
energy profile of the GRM in a LOT setup. (A) Total
system free energy F tot = −kBT ln Ptot for fixed L =
100 nm, and varying ratios lp/L. All of the other
parameters are in Table S1 (GRM column). The exact
analytical free energy at F0 =11.9 pN (dashed line)
for the GRM alone, F~GRM = − kBT   ln  P~GRM, is shown
for comparison. (B) For each F tot in A, the con-
struction of F~GRM at F0, together with the exact
answer (dashed line). (C) For system parameters
matching the experiment (Table S1), the variance of
the point-spread function P~bh broken down into the individual handle, bead, and linker contributions. The fraction for each component is shown as
a function of varying handle elastic modulus γ.

A

B C

Fig. 4. Intrinsic characteristics of the
LZ26 leucine zipper at constant F0, de-
rived from SOP simulations in the absence
of handles/beads. (A) LZ26 free energy F~p
at F0 = 12.3 pN vs. end-to-end extension z.
(Right) Representative protein config-
urations from the four wells (N, I1, I2, U),
with asparagine residues colored blue. (B)
Average fraction of native contacts be-
tween the two alpha-helical strands of
LZ26 (the “zipper bonds”) as a function of
z. (Left) Lists of the a and d residues in
the heptads making up the amino acid
sequence for each LZ26 strand, placed
according to their position along the
zipper. Asparagines (N) are highlighted in
blue. (C) For the residues listed in B, the
residue contact energies used in the SOP
simulation [rescaled BT (30) values].
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Comparison between the experimental F~p in Fig. 5H and the
simulation result in Fig. 5F reveals a notable difference: The
landscape constructed using the experimental data does not have
four basins. The N state may not be discernible in the experiment
because of the limited resolution of the apparatus (see below).
The spacing between the I1 and I2 wells is similar in the simu-
lation and experiment (∼9–13 nm), but that between I2 and U is
∼13 nm in the simulation vs. 25 nm in the experiment. This is
likely due to a larger helix content in the unfolded state in the
simulations.

Discussion
Origins of the Variance in the Point-Spread Function. Our theory for
the point-spread function P

~
bh can be used to understand

the interplay of physical effects that relate the intrinsic protein
distribution to the total system. To quantify the various con-
tributions to P

~
bh, we calculated its variance. Because variances of

probability distributions combine additively upon convolution, we
break down the variance of P

~
bh into the individual bead, handle,

and linker contributions. Fig. 3C shows the fraction of the variance
associated with each component as a function of the handle elastic
modulus γ at F0 = 12.3 pN, with Rb = 500 nm, L = 188 nm, and lp =
20 nm (the approximate experimental parameters from ref. 11).
For any given value of γ, the height of each of the four colored slices
represents four fractions. Although not directly measured in ref. 11,
we have assumed κ = 200 kcal/mol· nm2, ℓ = 1.5 nm for the linkers.
The handle contribution is itself broken down into the “elastic”
part, defined as the extra variance due to finite γ, compared with an
inextensible (γ → ∞) worm-like chain (WLC), and the remainder,
which we call the WLC part. For the case of ref. 11, γ = 400 pN.
Because the length extension relative to the WLC result is ∼F0/γ,
we expect finite handle extensibility to play a small role. Surpris-
ingly, the elastic contribution to the total P~bh variance at this γ is
43%, comparable to the WLC contribution of 48%. Hence, in

predicting P~bh correctly it is important to account for both the
bending rigidity and elasticity of the handles.

Instrumental Noise Filtering and the Limits of the Theoretical
Approach. The difference in the number of wells in the simula-
tion and experimental free-energy landscapes of the leucine
zipper is related to finite time and spatial resolution. The mea-
sured time series is subject to noise and low-pass filtering due to
the apparatus (15). The standard experimental protocol often
involves additional low-pass filtering as a way of removing noise
and smoothing trajectories: for the leucine zipper every five data
points (originally recorded at 10-μs intervals) are averaged to-
gether during collection to give a time step of 50 μs (11). Noise
broadens the measured distribution of bead separations, whereas
low-pass filtering narrows it. The finite bandwidth scaling (FBS)
technique (Materials and Methods; SI Text), based on the details
of the specific apparatus used in the experiment, estimates and
corrects for the distortions.
The FBS theory can only apply corrections to peaks (i.e.,

distinct protein states) that we observe in the measured proba-
bility distributions. There is the possibility of protein states
leaving no discernible signature in the recorded distribution. The
N state in the leucine zipper is connected only to the I1 state in
the folding pathway. In the simulations, where the N state is
directly observed, it has short mean lifetimes ((6 μs in the
studied force range). The N ↔ I1 change involves the shortest
mean extension difference (∼8 nm) among all of the transitions.
If the N state in the actual protein has similar properties, it could
be impossible to resolve it in the experimental data for two
reasons: (i) Regardless of any additional filtering, the intrinsic
low-pass characteristics of the apparatus filter out states with
very short lifetimes. For our LOT setup, the effective low-pass
filter time scale for the detectors/electronics is τf ∼ 7 μs (SI Text),
which is at the cutting edge of current technology. Thus, states

A B C D

E F

G H

Fig. 5. (A and B) A trajectory fragment and the
probability distribution P~p from SOP simulations of
the LZ26 leucine zipper at constant force F0 = 12.3
pN in the absence of handles/beads. (C and D) A
trajectory fragment and the total system distribu-
tion Ptot at ztrap = 503 nm. C shows both the total
extension ztot(t) (purple) and the protein extension
zp(t) (gray). Triangles mark times when the protein
makes a transition between states, and the arrows
point to two enlarged portions of the trajectories.
In all cases the z-axis origin is zI1, the peak location
of the I1 intermediate state. (E–G) Leucine zipper
free-energy profiles extracted from time series
(third row = simulation, fourth row = experiment).
First column shows the total system end-to-end
distribution Ptot and the corresponding P~tot at
constant force F0 = 12.3 pN. In the experimental
case F0 = 12.3 ± 0.9 pN is the midpoint force at
which the I1 and U states are equally likely. For Ptot,
ztrap = 503 nm (simulation), 1553 ± 1 nm (experi-
ment). Force scales at the top are the range of trap
forces for Ptot. Second column shows the computed
intrinsic protein free-energy profiles F~p compared
with the total system profile, F tot (shifted upward
for clarity). (F) SOP simulations for the protein alone
at constant F0 provide a reference landscape, drawn
as a dashed line. (H) Dotted curve is the recon-
structed F~p at the midpoint force F0 = 12.1 ± 0.9 pN,
from a second, independent experimental trajec-
tory, with ztrap = 1547 ± 1 nm. F~p curves have
a median uncertainty of 0.4 kBT over the plotted
range (see SI Text for error analysis).
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with lifetimes (τf will not appear as distinct peaks in the mea-
sured distribution. (ii) Independent of the filtering issues in de-
tection/recording, environmental background noise in the time
series also poses a problem, particularly because we measure
bead displacements, and these have signal amplitudes at high
frequencies that are generally attenuated compared with the
intrinsic amplitudes of the protein conformational changes. The
reason for this is that the beads have much larger hydrodynamic
drag than dsDNA handles or proteins, and their characteristic
relaxation times τr in the optical traps may be comparable to or
larger than the lifetime of a particular protein state. The bead
cannot fully respond to force changes on time scales shorter than
its relaxation time (14). For example, τr ∼ 20 μs in the leucine
zipper experiment. If the lifetime of the N state at a particular
force is much smaller than τr, protein transitions from I1→N→I1
will generally occur before the bead can relax into the N-state
equilibrium position. If the bead displacements associated with
these transitions are smaller than the noise amplitude in the time
series, the entire excursion to the N state will be lost to the noise.
We can illustrate the finite response time of the bead using

simulations where resolution is not limited by noise or apparatus
filtering, allowing us to see the relationship between ztot(t) and
zp(t), compared in two different trajectory fragments in Fig. 5C.
Triangles in the figure indicate times where the protein makes
a transition between states. Changes in protein extension during
these transitions are very rapid, and the bead generally mirrors
these changes with a small time lag, as seen in the enlarged tra-
jectory interval at t = 36−42 μs. When the protein makes sharp,
extremely brief excursions (such as a visit to the N state from I1
in the enlarged interval t = 90–96 μs), the corresponding changes
in bead separation are smaller and much less well-defined. In the
presence of noise, such tiny changes would be obscured.
Thus, we surmise that the N state is not observable due to

some combination of apparatus filtering, noise, and finite bead
response time. Hence, the theory applied to the experimental

data produces a landscape with only I1, I2, and U wells, as op-
posed to the four wells in the simulation data.

Conclusions
Extraction of the energy landscape of biomolecules using LOT
data is complicated because accurate analysis depends on cor-
recting for distortions due to system components. We have solved
this problem completely by developing a theoretically based
construction method that accounts for these factors. Through an
array of tests involving an analytically solvable hairpin model,
coarse-grained protein simulations, and experimental data, we
have demonstrated the robustness of the technique in a range of
realistic scenarios. The method works for arbitrarily complicated
landscapes, producing consistent results when the same protein is
studied under different force scales.

Materials and Methods
FBS. Probabilitydistributionsderivedfromexperimentaltimeseriesofbead–bead
separations are corrupted by noise, finite apparatus bandwidth, and in some
cases additionalfiltering due to the data processing protocol.We developed FBS
theory to model and correct for these effects (SI Text), using information enco-
ded in time series autocorrelations, together with spectral characterization of
the dual-trap optical tweezer detector and electronic systems (15). All of the
experimental distributions Ptot in the main text were first processed by FBS.

Leucine Zipper. We use a variant of the coarse-grained SOP model (29, 31),
where each of the 176 residues in LZ26 is represented by a bead centered at
the Cα position (SI Text). The α-helical secondary structure is stabilized by
interactions which mimic (i, i + 4) hydrogen bonding (32). We use residue-
dependent energies for tertiary interactions (30). Simulations are carried out
using an overdamped Brownian dynamics algorithm (33).
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1. Theory for Free-Energy Construction from Mechanical
Folding Time Series
1.1. Optical Trap Hamiltonian. We begin with the Hamiltonian for
the beads in the traps (Fig. 1), which allows us to introduce the
relevant variables of the system. If the displacements of the beads
from the trap centers are small (<100 nm for a laser of 1,064-nm
wavelength and bead radii ∼O(100 nm) (1), the trap Hamilto-
nian can be approximately written as

Htrapðr1; r2Þ= 1
2
kx
�
x21 + x22

�
+
1
2
ky
�
y21 + y22

�
+
1
2
kz
h
z21 +

�
ztrap − z2

�2i
;

[S1]

where ri = (xi, yi, zi) is the position of the ith bead center, kx, ky, kz
are the trap strengths along each coordinate direction, and the
two traps are positioned at z = 0 and z = ztrap, respectively. Given
the cylindrical symmetry of the optical traps around the ŷ axis, we
take kx = kz ≡ ktrap and ky = αktrap, where the weaker axial
trapping is reduced by a factor α < 1 (2). We assume both traps
have equal strengths, although our method can be generalized to
an asymmetric configuration, where the two traps have different
strengths ktrap,1 ≠ ktrap,2. In this case the reconstruction proce-
dure derived below is valid with the substitution ktrap = 2ktrap,1
ktrap,2/(ktrap,1 + ktrap,2).
We rewrite the Hamiltonian in Eq. S1 by defining a total end-

to-end coordinate rtot ≡ r2 − r1 = (xtot, ytot, ztot), and a total
center-of-mass coordinate Rtot ≡ r2 + r1 = (Xtot, Ytot, Ztot). In
terms of these variables, Htrap becomes

Htrapðr1; r2Þ=Hcm
trapðRtotÞ+Hee

trapðrtotÞ;

Hcm
trapðRtotÞ= 1

4
kxX2

tot +
1
4
kyY 2

tot +
1
4
kz
�
ztrap −Ztot

�2
;

Hee
trapðrtotÞ=

1
4
kxx2tot +

1
4
kyy2tot +

1
4
kz
�
ztrap − ztot

�2
:

[S2]

The variables ztot and ztrap are explicitly labeled in Fig. 1.

1.2. Equilibrium Distribution of the System. The equilibrium prob-
ability Ptot(Rtot, rtot) of finding the beads at positions with
a given Rtot and rtot can be expressed as

PtotðRtot; rtotÞ=Ae−βH
cm
trapðRtotÞ−βHee

trapðrtotÞQtotðrtotÞ; [S3]

where β = 1/kBT, A is a normalization constant, and Qtot(rtot)
is the equilibrium probability of the total bead–handle–protein
system having bead separation rtot in the absence of the exter-
nal trapping potential or any applied force. By translational
symmetry Qtot is independent of the center-of-mass coordi-
nates, and by rotational symmetry Qtot(rtot) = Qtot(jrtotj). Thus,
if we introduce cylindrical coordinates rtot = (ρtot, ϕtot, ztot),
where ρtot =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2tot + y2tot

p
, ϕtot = tan−1(ytot/xtot), there is no angu-

lar dependence, so that Qtot(rtot) = Qtot(ρtot, ztot). We are
ultimately interested in the marginal probability Ptot(ztot),
which can be derived from the experimental time series and
forms the starting point of our theoretical procedure to obtain
the desired free-energy profile. We obtain Ptot(ztot) from
Ptot(Rtot, rtot) by integrating over the Rtot, ρtot, and ϕtot degrees
of freedom:

PtotðztotÞ≡
Z ​

ρtotdρtotdϕtotdRtotPtotðRtot; rtotÞ

=B
Z ​

ρtotdρtotdϕtote
−βHee

trapðρtot;ϕtot ;ztotÞQtotðρtot; ztotÞ

= 2πB
Z ​

ρtotdρtote
−1
8 βðkx+kyÞρ2tot−1

4 βkzðztrap − ztotÞ2

× I0

�
1
8
�
kx − ky

�
ρ2tot

�
Qtotðρtot; ztotÞ

≈Ce−
1
4 βkzðztrap − ztotÞ2QtotðztotÞ: [S4]

Here, B and C are constants that have absorbed the result of
integrating over Rtot and ρtot, respectively, and I0 is a modified
Bessel function of the first kind. Up to the third line the cal-
culation in Eq. S4 is exact. In the last step we make the problem
fully one-dimensional by approximately relating Ptot(ztot) to
Qtot(ztot), defined as QtotðztotÞ=

R
ρtotdρtotQtotðρtot; ztotÞ. We are

forced to make this crucial approximation, because experiments
have access only to the ẑ fluctuations through Ptot(ztot), but
generally do not have complete information about the trans-
verse components. As mentioned in the main text, the last step
in Eq. S4 becomes exact if: (i) kx = ky = 0; or (ii) when Qtot(ρtot,
ztot) is separable in the form Qtot(ρtot, ztot) = f(ρtot)Qtot(ztot) for
some function f. Although condition (ii) is not expected to
be generally valid, we can approximately satisfy (i) when
βktrapρ2tot � 1, where ρtot is the typical length scale of total sys-
tem fluctuations transverse to ẑ. Thus, for sufficiently soft traps,
we have in Eq. S4 a useful relation between the ẑ marginal
probabilities of the total system with and without the external
trapping potentials.

1.3. Convolution. Because Qtot(ztot) is the total end-to-end z-
component distribution in the absence of any external trapping
potential or applied force, the corresponding distribution for the
total system with constant tension F0 applied to the beads along ẑ
is given by ~Ptotðztot;F0Þ= expðβF0ztotÞQtotðztotÞ. Substituting for
Qtot(ztot) using Eq. S4, we find the following relation for
~Ptotðztot;F0Þ, which constitutes step i of our construction pro-
cedure in the main text:

~Ptotðztot;F0Þ≈C−1e βF0z+ 1
4 βkzðztrap − ztotÞ2PtotðztotÞ: [S5]

The quantity Ptot(ztot) on the right-hand side can be derived from
the experimental time series, and thus Eq. S5 allows us to obtain
an equilibrium distribution in the constant-force ensemble
~Ptotðztot;F0Þ directly from the folding trajectories.
In the constant-force ensemble, ~Ptot is just a 1D convolution of

the probabilities of the individual system components:

~Ptot = ~Pb * ~Ph * ~Pp * ~Ph * ~Pb; [S6]

where “*” denotes the convolution operator. The probability
~Pλðzλ;F0Þ is the equilibrium distribution of zλ at constant force
F0, where λ denotes a bead, handle, or protein. The quantity zλ is
the end-to-end distance of λ along ẑ. Using the notation in Fig. 1,
we can give a few examples: for the protein zp = ðrp2 − rp1Þ·ẑ; for
the left handle zh = ðrp1 − r′1Þ·ẑ; for the left bead zb = ðr′1 − r1Þ·ẑ.
In Fourier space, Eq. S6, which is the key equation for step ii of
the construction procedure in the main text, has a simple form:

Hinczewski et al. www.pnas.org/cgi/content/short/1214051110 1 of 16

www.pnas.org/cgi/content/short/1214051110


~Ptotðk;F0Þ= ~P2
bðk;F0Þ~P2

hðk;F0Þ~Ppðk;F0Þ≡ ~Pbhðk;F0Þ~Ppðk;F0Þ;
[S7]

where ~Pλðk;F0Þ is the Fourier transform of ~Pλðzλ;F0Þ. Here,
~Pbhðk;F0Þ= ~P2

bðk;F0Þ~P2
hðk;F0Þ is the Fourier transform of

the convolution of all of the bead and handle distributions.
If the left and right handles (or analogously the beads) had
distinct properties (i.e., different sizes), then the factor
~P2
hðk;F0Þ in ~Pbhðk;F0Þ would be replaced by the product

~Ph1ðk;F0Þ~Ph2ðk;F0Þ of the distinct handle terms. Given the ro-
tational properties of the beads and modeling the handles as
semiflexible polymers, we can derive a numerically exact form
for the Fourier components ~Pbhðk;F0Þ, and hence by inversion
the corresponding real-space distribution. This will allow us to
directly recover ~Pp from ~Ptot without resorting to an experimen-
tal estimate for the point-spread function, which is problematic
due to the varying force conditions that arise in optical traps with
nonzero stiffness.

1.4. Bead Distribution. The first step in finding ~Pbhðk;F0Þ=
~P2
bðk;F0Þ~P2

hðk;F0Þ is to obtain an expression for the Fourier-
space bead probability ~Pbðk;F0Þ. Taking as an example the left
bead in Fig. 1, let rb = r′1 − r1 be the vector between the bead
center and the point on the bead surface that is attached to the
handle. This vector has a fixed length Rb given by the bead ra-
dius, but its direction can fluctuate, subject to a constant force F0

along ẑ. The equilibrium distribution ~Pbðrb;F0Þ is given by

~Pbðrb;F0Þ= AbeβF0zbδðjrbj−RbÞ; [S8]

with the delta function enforcing the constraint jrbj = Rb, and the
normalization constant Ab. The quantity ~Pbðk;F0Þ is the Fourier
transform of ~Pbðrb;F0Þ evaluated at k= kẑ:

~Pbðk;F0Þ=
Z

drbe−ikzb ~Pbðrb;F0Þ

=
βF0sinhððβF0 − ikÞRbÞ
ðβF0 − ikÞsinhðβF0RbÞ:

[S9]

1.5. Handle Distribution. Although the Fourier components
~Phðk;F0Þ of the semiflexible handle distribution do not have
a simple analytic expression, they can be calculated numerically
to arbitrary accuracy. The Hamiltonian for the semiflexible
handle polymer with contour length L, persistence length lp, and
elastic stretching modulus γ can be exactly mapped onto the
propagator of a quantum particle on the surface of a unit sphere
(3, 4). Following the approach in ref. 4, we describe the polymer
as a continuous spatial contour r(s) in terms of an unstretched
arc length ls, which runs from s = 0 to s = L. At each point s we
define a unit tangent vector u(s). The end-to-end distance r(L) −
r(0) can be written as

rðLÞ− rð0Þ=
ZL

0

dsð1+ eðsÞÞuðsÞ; [S10]

where 1 + e(s) is the local relative bond length extension. For an
inextensible (γ → ∞) worm-like chain, e(s) = 0 for all s, which
corresponds to all bonds in the chain having fixed length. For
finite γ, the e(s) are additional degrees of freedom in the system,
which together with the unit tangent vectors u(s) completely
define the contour. The Hamiltonian H(u(s), e(s)) for the semi-
flexible polymer under tension is

βHðuðsÞ; eðsÞÞ= lp
2

ZL

0

dsð∂suðsÞÞ2 − f ẑ·ðrðLÞ− rð0ÞÞ+ βγ

2

ZL

0

dse2ðsÞ;

=
ZL

0

ds
�
lp
2
ð∂suðsÞÞ2 − f ð1+ eðsÞÞuzðsÞ+ βγ

2
e2ðsÞ

�
;

[S11]

where β = 1/kBT and we have used Eq. S10 for the end-to-end
distance. The first term in Eq. S11 corresponds to a bending
energy parametrized by the persistence length lp, the second
term is due to an applied mechanical force kBTf along ẑ, and
the third term describes the stretching energy of the bonds, with
elastic modulus γ. For prestretching tension F0, f = βF0, but for
convenience we will extend the definition of H to include arbi-
trary f to obtain the Fourier components of the end-to-end prob-
ability distribution below.
The partition function of the polymer (with free end boundary

conditions) can be expressed as a path integral over all possible
configurations of u(s) and e(s), with the constraint that u2(s) = 1
at each s:

Zhðf Þ=
Z

DuðsÞ∏
s
δ
�
u2ðsÞ− 1

� Z DeðsÞexp½−βHðuðsÞ; eðsÞÞ�;

≡
Z

DuðsÞ∏
s
δ
�
u2ðsÞ− 1

�
exp
	
−βHeffðuðsÞÞ



;

[S12]

up to some normalization constant. In the second line we have
carried out the path integral over e(s) exactly to express Zh(f)
in terms of an effective Hamiltonian Heff(u(s)) depending on the
tangent vectors alone,

βHeffðuðsÞÞ=
ZL

0

ds
�
lp
2
ð∂suðsÞÞ2 − fuzðsÞ− f 2

2βγ
u2z ðsÞ

�
: [S13]

The probability of finding the polymer in a configuration with
an end-to-end extension zh along ẑ is given by (3)

~Phðzh;F0Þ= 1
ZhðβF0Þ

Z ​

DuðsÞ∏
s
δ
�
u2ðsÞ− 1

�

Z
DeðsÞδ

�
zhand −

ZL

0

dsð1+ eðsÞÞuzðsÞ
�
exp½−βHðuðsÞ; eðsÞÞ�

=
1

ZhðβF0Þ
Z

DuðsÞ∏
s
δ
�
u2ðsÞ− 1

�

Z
DeðsÞ

Z
dk
2π

e
ik

�
zh−

Z L

0
dsð1+eðsÞÞuzðsÞ

�

exp½−βHðuðsÞ; eðsÞÞ�

≡
Z

dk
2π

eikzh ~Phðk;F0Þ;
[S14]

where the Fourier components of the probability distribution are

~Phðk;F0Þ=ZhðβF0 − ikÞ
ZhðβF0Þ : [S15]
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To evaluate ~Phðk;F0Þ, we need to calculate Zh(f). Let us de-
fine the propagator G(u0, uL; L) as the path integral over all
configurations with initial tangent u(0) = u0 and final tangent
u(L) = uL:

Gðu0; uL;LÞ=
ZuðLÞ=uL

uð0Þ=u0

DuðsÞ∏
s
δ
�
u2ðsÞ− 1

�
e−βHeff ðuðsÞÞ: [S16]

This is related to the partition function through Zhðf Þ=
ð4πÞ−2RSdu0duLGðu0; uL;LÞ, where the integrations are over
the unit sphere S.
The quantum Hamiltonian corresponding to βHeff is

Hqu
effðf Þ= −

1
2lp

∇2 − fcos θ−
f 2

2βγ
cos2θ; [S17]

describing a particle on the surface of a unit sphere, with θ = 0 de-
fining the ẑ direction. The propagator G can be written in terms
of the quantum eigenvalues En and eigenstates ψn(u) of Hqu

eff :

Gðu0; uL;LÞ=
X

n

e−EnLψ*
nðu0ÞψnðuLÞ

=
X

n;l;m;l′;m′
e−EnLa*nl′m′anlmY

*
l′m′ðu0ÞYlmðuLÞ; [S18]

where we have expanded the eigenstates in the basis of spherical
harmonics, ψnðuÞ=

P
lmanlmYlmðuÞ. The coefficients anlm are the

components of the nth eigenvector of the Hamiltonian Hqu
eff in

the Ylm basis. The partition function Zh(f) becomes

Zhðf Þ= 1

ð4πÞ2
Z

S

du0 duL
X

n;l;m;l′;m′
e−EnLa*nl′m′anlmY

*
l′m′ðu0ÞYlmðuLÞ

=
1
4π

X

n

e−EnLa*n00an00

= h0je−LHqu
eff ðf Þj0i:

[S19]

In the last step we have written the expression as a single com-
ponent of the exponentiated matrix Hqu

effðf Þ in the (l, m) spher-
ical harmonic basis, where jl〉 denotes a state (l, 0). Because the
Hamiltonian matrix in the m = 0 subspace does not couple to
m ≠ 0 components, we only need m = 0 matrix elements to
evaluate Zh(f). The list of nonzero matrix entries in the m =
0 subspace is

hljHqu
effðf Þjli=

1
2lp

lðl+ 1Þ− f 2

2βγ
2l2 + 2l− 1

ð2l− 1Þð2l+ 3Þ;

 l= 0; 1; 2; . . . ;

hljHqu
effðf Þjl+ 1i= hl+ 1jHqu

effðf Þjli=
f ðl+ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2l+ 1Þð2l+ 3Þp ;

 l= 0; 1; 2; . . . ;

hljHqu
effðf Þjl+ 2i= hl+ 2jHqu

effðf Þjli=−
f 2

2βγ
ðl+ 1Þðl+ 2Þ

ð2l+ 3Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2l+ 1Þð2l+ 5Þp ;  

l= 0; 1; 2; . . . :
[S20]

To carry out the matrix exponent, we truncate the matrix at
lmax = 20, which is sufficiently large for numerical accuracy.

In some experimental setups, covalent linkers are attached on
both ends of each handle, connecting the handle to the neigh-
boring bead and protein, as schematically drawn in Fig. S1A. The
effect of linkers can be absorbed into the theory by modifying
~Phðk;F0Þ. The simplest representation of a linker is a harmonic
spring with stiffness κ and natural length ℓ. With one of these
added at each end of the handle, Eq. S15 becomes

~Phðk;F0Þ=ZhðβF0 − ikÞ
ZhðβF0Þ

Z2
linkðβF0 − ik; κ; ℓÞ
Z2
linkðβF0; κ; ℓÞ

; [S21]

where

Zlinkðf ; κ; ℓÞ= 1
f

ffiffiffiffiffiffiffiffiffiffiffiffiffi
π

2ðβκÞ3
s

e
f ðf−2ℓβκÞ

2βκ

�
ℓβκerf

�
f − ℓβκ
ffiffiffiffiffiffiffiffi
2βκ

p
�

+ e2f ℓðf + ℓβκÞ
�
erf
�
f + ℓβκ
ffiffiffiffiffiffiffiffi
2βκ

p
�
+ 1
�
+ ferfc

�
f − ℓβκ
ffiffiffiffiffiffiffiffi
2βκ

p
�
− ℓβκ

�
:

[S22]

1.6. Numerical Deconvolution to Extract the Protein Distribution. The
expressions given by Eqs. S9 and S21 completely determine the
Fourier-transformed point-spread function ~Pbhðk;F0Þ at all k.
Naively, one could use Eq. S7 to write

~Ppðk;F0Þ=
~Ptotðk;F0Þ
~Pbhðk;F0Þ

: [S23]

Because ~Ptotðk;F0Þ is derivable from the experimental times se-
ries, this would immediately yield ~Ppðk;F0Þ, and after inversion
the ultimate goal, ~Ppðzp;F0Þ. However, this direct deconvolution
in Fourier space is numerically unstable (5) due to the effects
of round-off noise and the denominator in the equation for
~Ppðk;F0Þ approaching zero at large k.
To work around this problem, we implement the deconvolution

in real space by solving the following integral equation for ~Pp (the
real space version of Eq. S7):

Z
dzp ~Pbh

�
ztot − zp;F0

�
~Pp
�
zp;F0

�
= ~Ptotðztot;F0Þ: [S24]

One way to approach Eq. S24 is to approximate the integral as
a matrix–vector product by discretizing the ztot and zp ranges.
However, the convolution matrix corresponding to ~Pbh is gener-
ally ill-conditioned, so direct inversion to find a solution is un-
feasible. Alternatively, to obtain robust, smooth results for the
deconvolution, we can rewrite Eq. S24 by representing the three
quantities ~Pp, ~Pbh, and ~Ptot in terms of suitable fitting functions.
Because these are all probability distributions, in practice we can
approximate them to arbitrary precision as sums of Gaussians
g(z; ζ, v) = (2πv)−1/2 exp(−(z − ζ)2/(2v)),

~Pαðzα;F0Þ=
XNα

i= 1

aαi g
�
zα; ζαi ; v

α
i

�
; [S25]

where α = p, bh, or tot. The number of Gaussians needed for
each distribution Nα is chosen depending on the problem. The
two sets of parameters fatoti ; ξtoti ; vtoti g and fabhi ; ξbhi ; vbhi g (which
implicitly depend on F0) are computed by fitting to the known
functions ~Ptot and ~Pbh. The goal of the procedure is then to use
Eq. S24 to solve for the parameter set fapi ; ξpi ; vpi g describing the
unknown function ~Pp. For the cases discussed in the main text,
choosing Nα = 2−3 was sufficient to find solutions ~Pp such that
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the left- and right-hand sides of Eq. S24 had a median deviation
≲1% over all ztot where Ptot(ztot) > 10−6.
The details of the solution procedure are as follows: we choose

Np = Ntot, so that Eq. S24 can be approximated as a one-to-one
convolution mapping each Gaussian in ~Pp into a corresponding
Gaussian in ~Ptot. For all i = 1,. . .,Ntot, Eq. S24 describes the
following relationships between the amplitudes, positions, and
variances of the Gaussians:

atoti ≈ api ;

ξtoti ≈
XNbh

j= 1

abhj
�
ξbhj + ξpi

�
;

vtoti ≈
XNbh

j= 1

abhj
�
vbhj + vpi +

�
ξbhj + ξpi

�2�
:

[S26]

The approximation is exact when the point-spread function ~Pbh
is precisely a single Gaussian, but is generally valid whenever ~Pbh
is close to Gaussian (as is the case for the bead–handle system,
where the corrections introduced by choosing Nbh > 1 are small).
Eq. S26 can be inverted to yield the desired parameter set
fapi ; ξpi ; vpi g:

api ≈ atoti ;

ξpi ≈ ξtoti −
XNbh

j= 1

abhj ξbhj ;

vpi ≈ vtoti −
XNbh

j= 1

abhj

"

vbhj +

 

ξbhj + ξtoti −
XNbh

k= 1

abhk ξbhk

!2#

;

[S27]

where we have used the fact that
PNbh

i abhi = 1 due to normalization.

2. Experimental Verification of the Model for the Point-
Spread Function
To check that the theoretical model of the point-spread function
~Pbh derived in SI Text, sections 1.4 and 1.5 is an accurate de-
scription of the handle and bead response in experiments, we
analyzed control experiments on a system with only double-
stranded DNA (dsDNA) handles and beads. Bead radii are Rb =
500 ± 25 nm, the trap strength is ktrap = 0.29 ± 0.02 pN/nm, and
the handle parameters are extracted from the theoretical best fit
described below. Four distinct experimental data sets are col-
lected (Fig. S2): the first is from a pulling setup, where the trap
separation is varied to give a trajectory of force F vs. total ex-
tension z (Fig. S2A, blue curve); the other data sets are trajec-
tories of extension z as a function of time collected at three
different constant trap separations. These three trajectories can
be binned, and projected onto the constant-force ensemble using
the same method (Eq. S5) as described above for the full system,
yielding probability distributions ~Pbhðz;F0Þ for the total end-to-end
extension of the bead–handle system (Fig. S2 B–D, blue curves).
The constant-force value F0 for each projection is chosen equal
to the mean force in each of the three trajectories, namely F0 =
9.4 ± 0.7, 11.5 ± 0.8, and 12.7 ± 0.9 pN.
The experimental data were collected at 100 kHz, with no

additional time averaging beyond the electronic filtering intrinsic
to the detection and recording apparatus. Before the projection
onto the constant force ensemble, the finite bandwidth scaling
(FBS) method (SI Text, section 6) was used to approximately
correct the raw experimental data for distortions due to elec-
tronic filtering and noise. In the absence of these corrections, the
~Pbhðz;F0Þ from the raw data are given by the dashed curves in
Fig. S2 B–D.
The SE margin (68% confidence interval) for each point in the

~Pbh distribution is marked by a light blue band, reflecting un-

certainties in apparatus and FBS parameters, as well as statistical
error due to sampling. Details of the error estimation procedure
are in SI Text, section 7. The median SE in the z range shown
varies from 3% to 5% between the three trajectories.
We use the theoretical model of SI Text, sections 1.4 and

1.5 to simultaneously fit all four experimental data sets with
a single set of handle parameters, yielding best-fit values: L =
173 ± 2 nm, lp 11 ± 1 nm, and γ = 520 ± 70 pN. The theory
has excellent agreement with all of the experimental results,
with median deviations in ~Pbhðz;F0Þ for the z range shown in
Fig. S2 B–D varying from 1% to 3% between the three tra-
jectories, comparable to the SE margins. The comparison be-
tween theory and experiments firmly establishes the remarkable
accuracy of our theory in quantitatively describing the bead–
handle system.

3. Generalized Rouse Model
3.1. Hamiltonian and Exact Probability Distribution for the Gen-
eralized Rouse Model. The generalized Rouse model (GRM)
(6), illustrated schematically in Fig. S1B, is a Gaussian chain with
N monomers, connected by N − 1 harmonic springs with an
average extension a. A conformation of the GRM is specified by
the monomer positions ri, i = 1,. . .,N. To get behavior reminis-
cent of hairpin unzipping, an additional harmonic bond potential
V(jrN − r1j) is added between the endpoints r1 and rN; the force
due to this potential is nonzero only if the endpoint separation is
within a cutoff distance c. Under a constant external tension F0ẑ
the GRM Hamiltonian is

HGRM =
3kBT
2a2

XN−1

i= 1

ðri+ 1 − riÞ2 +V ðjrN − r1jÞ−F0ẑ·ðrN − r1Þ;

[S28]

where V(r) = kr2Θ(c − r) + kc2Θ(r − c), and Θ is the unit
step function. We choose parameters n = 18, F0 = 2.9 kBT/nm
(11.9 pN), a = 1 nm, c = 12 nm, and k = 0.09 kBT/nm

2

(0.37 pN/nm).
If we write the end-to-end vector rN − r1 in cylindrical coor-

dinates as (ρ, ϕ, z), the exact probability distribution for this
vector in equilibrium under constant force F0ẑ is given by

~PGRMðρ;ϕ; z;F0Þ=AGRM exp
�
−
3
�
ρ2 + z2

�

2a2ðN − 1Þ− βV
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 + z2
p �

+ βF0z
�
;

[S29]

where AGRM is a normalization constant. This distribution, pro-
jected onto the (ρ, z) plane, is illustrated in Fig. 2A, Upper. The
peak at small z corresponds to the “folded” hairpin state (F) with
an intact endpoint bond, whereas the peak at larger z is the
unfolded (U) state. Integrating ~PGRMðρ;ϕ; z;F0Þ over ρ and ϕ,
one obtains the marginal probability ~PGRMðz;F0Þ,

~PGRMðz;F0Þ= A′GRMe
− 3z2

2a2 ðN−1Þ+βF0z

·

8
>>><

>>>:

e
−
c2ð3+2a2βkðN−1ÞÞ−3z2

2a2ðN−1Þ −
3e−βkz

2

3+ 2a2βkðN − 1Þ

 

e
−ðc2−z2Þ�βk+ 3

2a2 ðN−1Þ

�

− 1

!

z≤ c

e−βkc
2

z> c;

[S30]

with normalization constant A′GRM. ~PGRMðz;F0Þ is plotted in Fig.
2A, Lower.

3.2. Testing the GRM Deconvolution at Various Forces and Trap
Strengths. In Fig. 3B we showed that the deconvolution results
for the GRM are robust when varying the handle parameters. In

Hinczewski et al. www.pnas.org/cgi/content/short/1214051110 4 of 16

www.pnas.org/cgi/content/short/1214051110


Fig. S3 we demonstrate that the same conclusion holds when
either the force F0 or the trap strength ktrap is varied.

4. Weighted Histogram Analysis Method: Combining
Trajectories from Experimental Runs at Different Trap
Separations
The weighted histogram analysis method (7) (WHAM) is a
powerful tool in analyzing optical tweezer experiments. By
combining trajectories generated at different trap separations
ztrap (resulting in different force scales F), one can sample the
full extent of the protein free-energy landscape, and use WHAM
to construct a single energy profile using all of the trajectory
data, as previously done in ref. 8, and, in a related, but different
manner, in ref. 9. In the context of our theory, WHAM modifies
step i of our procedure, allowing us to derive the equilibrium
probability ~Ptotðztot;F0Þ at constant force F0 based on infor-
mation from multiple experimental trajectories. Consider a set of
M experimental runs, where the ith trajectory consists of ni data
points and has a trap separation zðiÞtrap. Except for z

ðiÞ
trap, all other

system parameters are kept the same between runs. For each run
one can calculate the normalized histogram of total end-to-end
distances ztot, yielding a probability distribution PðiÞ

totðztotÞ. This
distribution is related to Q(ztot), the unbiased ztot probability
in the absence of a trapping potential or external force, through
Eq. S4. Inverting that equation, we can write

QtotðztotÞ≈ C−1
i e

1
4βkzðzðiÞtrap − ztotÞ2PðiÞ

totðztotÞ≡ eβðUiðztotÞ−FiÞPðiÞ
totðztotÞ;

[S31]

where Ci is a normalization constant, UiðztotÞ= kzðzðiÞtrap − ztotÞ2=4,
and Fi = β−1 ln Ci. In the case of one trajectory (M = 1), Eq. S31
is a way to estimate Qtot(ztot), from which one can calculate
~Ptotðztot;F0Þ= expðβF0ztotÞQtotðztotÞ. This is just the standard step
i procedure described earlier.
When M > 1, Eq. S31 provides a different estimate of

Qtot(ztot) for each i, which ideally should be combined to give
a single best approximation. The WHAM method resolves this
problem, yielding a best estimate for Qtot(ztot) of the form

QtotðztotÞ= A
PM

i= 1niPðiÞ
totðztotÞ

PM
j= 1nje

−βðUjðztotÞ−FjÞ; [S32]

where A is a normalization constant. The unknown parameters
{Fi} are given by

Fi = −
1
β
ln
� Z

dztotQtotðztotÞe−βUiðztotÞ
�
: [S33]

Eqs. S32 and S33 are a coupled system of equations for Qtot(ztot)
and {Fi}. We solve these by making an initial guess for the set
{Fi}, substituting it into Eq. S32 to find Qtot(ztot), and using this
estimate for Qtot(ztot) in Eq. S33 to find a new set of {Fi}. The
process is iterated until we converge to a self-consistent solution
to both equations. Once we have a best estimate of Qtot(ztot), we
can calculate ~Ptotðztot;F0Þ as above, completing step i of the
construction.

5. Leucine Zipper Simulations
5.1. Self-Organized Polymer Model for the LZ26 Leucine Zipper. The
amino acid sequence for a single α-helical strand of the LZ26
coiled coil is as follows (grouped into heptad repeats): MCQLEQK
VEELLQK NYHLEQE VARLKQL VGELEQK VEELLQK
NYHLEQE VARLKQL VGELEQK VEELLQK NYHLEQE
VARLKQL VGEC. The sequence is the same as in ref. 10, ex-
cept that we have left out 4 residues at the beginning and 3 from

the final heptad, for a total of 88 residues per strand. As in the
experiment (10), the handles are attached at the cysteine in
position b of the first heptad, and the cross-linking between
strands is at the cysteine in position d of the last heptad. (For
consistency, when comparing simulations with or without the
handles/traps, end-to-end distance for the protein is always
measured between the two N-terminal cysteines.) Although the
crystal structure is not available for LZ26, it is believed to be
similar to three GCN4 leucine zipper domains (Protein Data
Bank ID code 2ZTA) (11) in series. Thus, we constructed a model
for the native structure based on GCN4, connecting the leucine
zipper segments in such a way that the distances between neigh-
boring Cα positions and angles of superhelical coiling formed
a continuous pattern as one moves along LZ26.
Going from N- to C terminus on one strand and returning C- to

N terminus on the other, let us label the residues i = 1,. . .,Nres,
where Nres = 176, where 1 ≤ i ≤ 88 corresponds to one strand,
and 88 < i ≤ 176 corresponds to the other. Every nonneighboring
pair of residues (i, j), where ji − jj > 1, is assigned to one of three
sets: S (secondary structure pairs), T (tertiary structure pairs),
and R (remainder). The set S consists of all pairs where ji − jj =
4 and i, j share the same strand, representing residues interacting
through α-helical hydrogen bonding. The set T consists of all
pairs where i, j are on different strands, and the distance between
the two residues in the native structure r0i;j is below a cutoff:
r0i;j <Rc = 0:8 nm. These pairs are involved in tertiary interactions
between the two α-helical coils. All other nonneighboring pairs
that do not satisfy the criteria for S or T fall into the set R, and
only interact via repulsive Lennard-Jones potentials.
The variant self-organized polymer (SOP) Hamiltonian for

LZ26 has the form

HSOP =
kbond
2

XNres−1

i= 1

�
ri;i+ 1 − r0i;i+1

�2

+
kang
2

XNres−2

i= 1

	
1− cos

�
θi;i+1;i+2 − θ0

�

Δi;i+1;i+2

−
X

ði;jÞ∈S
ehb

h
1+ khbbond

�
ri;j − r0i;j

�2
+ khbang

��
θi;j;j− 1 − θ0i;j;j−1

�2

+
�
θi+ 1;i;j − θ0i+1;i;j

�2
+
�
ϕi+ 1;i;j;j− 1 −ϕ0

i+1;i;j;j−1
�2�i−1

+
X

ði;jÞ∈T
χjeBTði; jÞ− esjVLJ

 
r0i;j
ri;j

!

+
X

ði;jÞ∈R
erep

�
σ

ri;j

�6

:

[S34]

The first term is the nearest-neighbor bond potential, where ri,j is
the distance between residues i and j, and the spring constant
kbond = 200 kcal/mol · nm2. The second term is the bond angle
potential, with the spring constant kang = 2 kcal/mol. The angle
between the bonds (j, i) and (j, k) is θi,j,k, and the equilibrium
value θ0 = 0.583π rad = 105°, a typical bond angle in protein
structures (12). The factor Δi,j,k = 1 if i, j, k are all on the same
strand, 0 otherwise. The relative softness of the bond angle po-
tential, together with the form of the secondary structure inter-
actions detailed below, ensures that the two strands in the
unfolded LZ26 (with all interstrand tertiary contacts broken)
have a persistence length of ∼0.7 nm, consistent with experimen-
tal measurements (10).
The third term in Eq. S34 accounts for the effects of hydrogen

bonding along the α-helical backbone, and is based on a similar
form developed for RNA (13). We mimic the directionality de-
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pendence of hydrogen bonds by making the bond energy depend
not only on the distance ri,j, but also on bond and dihedral angles
defined by the four residues i + 1, i, j, and j − 1, with ji − jj = 4.
For each (i, j) there are two bond angles θi,j,j−1 and θi+1,i,j and
one dihedral angle ϕi+1,i,j,j−1. The equilibrium values of the an-
gles, denoted by a superscript 0, are calculated from the corre-
sponding quantities in the native structure. Only when the
distance, bond angles, and dihedral angles are all simultaneously
equal to the equilibrium values does the hydrogen bond poten-
tial reach its energy minimum −ehb, where ehb > 0. Thus, the
minimum is reached only when the entire (i, i + 4) strand seg-
ment adopts a structure resembling a single α-helical turn. The
α-helical propensity of an (i, i + 4) segment is determined by the
energy scale ehb and the sensitivity parameters khbbond, k

hb
ang. Larger

values for the sensitivity parameters increase the brittleness of
the α-helix, making it more likely to be destabilized due to
thermal fluctuations. To calibrate the parameters, we define
a helix function H(i, j) for any (i, j) ∈ S,

Hði; jÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
ri;j
r0i;j

− 1

!2

+

 
θi;j;j− 1

θ0i;j;j−1
− 1

!2

+

 
θi+ 1;i;j

θ0i+1;i;j
− 1

!2

+

 
ϕi+ 1;i;j;j− 1

ϕ0
i+1;i;j;j−1

− 1

!2
vuut ;

[S35]

reflecting the rms deviation of the bond distances and angles from
their equilibrium values. We use H(i, j) as a measure of helix
content, by counting the fraction of pairs in S where H(i, j) is less
than a cutoff Hc = 0.5. It is known from thermal denaturation
experiments on GCN4 (14) that the individual α-helices upon
unzipping are unstable, with ∼17% helical content. In contrast,
the tertiary contacts in the coiled-coil structure stabilize helix
formation, resulting in a much higher helical content of ∼81%.
We expect qualitatively similar behavior in LZ26 in the case of
force denaturation, and thus tune the sensitivity parameters to
yield a large difference in the helix content between the unfolded
and folded states. The parameter values are set at ehb= 3.85 kcal/
mol, khbbond = 10 nm−2, and khbang = 40 rad−2. For these values we find
a helix content of 3 and 82%, respectively, for the unfolded and
folded states of LZ26 under a constant force of F0 = 12.3 pN.
The fourth term in Eq. S34 describes tertiary interactions

between the two strands of LZ26, (i, j) ∈ T . These have a resi-
due-dependent energy χjeBT(i, j) −esj. Here, χ is an overall
prefactor, eBT (i, j) is the Betancourt–Thirumalai (BT) contact
energy for residues i and j (15), and es shifts the zero of the
energy scale (16). To get a leucine zipper that unfolds at the
experimental force scale of ∼12 pN, we choose χ = 2.25 and
energy shift es = 0.7 kBT. The tertiary interactions use a modified
Lennard-Jones potential of the form

VLJðxÞ=
8
<

:
x6 −

3
2
x4 −

1
2

x≤ 1

x12 − 2x6 x> 1
: [S36]

This has the standard 12–6 form at large distances, but a softer
short-range repulsive core, increasing with the inverse 6th rather
than 12th power. The choice of the softer potential is made to
allow for a longer simulation time step, although not having a sig-
nificant impact on the large-scale dynamics of the system (17).
The final term in Eq. S34 describes purely repulsive inter-

actions among the remaining nonneighboring pairs (i, j) ∈ R,
with energy factor erep = 1 kcal/mol and range σ = 0.38 nm. We
use the inverse sixth power in the repulsive potential for the
same reasons as above.

5.2. Semiflexible Bead–Spring Model for the DNA Handles. Each
dsDNA handle is modeled as a chain of Nh beads of radius a = 1

nm, corresponding to a contour length L = 2aNh. The handle
Hamiltonian is

Hh =
kbond
2

XNh−1

i= 1

�
ri;i+ 1 − 2a

�2 +
lpkBT
2a

XNh−2

i= 1

	
1− cosðθi;i+1;i+2Þ



;

[S37]

where ri,i+1 are the distances between neighboring beads, kbond =
200 kcal/mol · nm2, lp is the persistence length, and θi,i+1,i+2 are
angles between consecutive bonds. The two terms are stretching
and bending energies, respectively. The handle elastic modulus
γ = 2akbond = 2,780 pN. For the persistence length we consider,
lp = 20 nm, at the applied tension due to the traps, the handles
(and unfolded portions of the protein) are almost fully extended,
and there is negligible probability of the chain overlapping itself
or protein residues in the vicinity of the handle attachment point.
Hence, there is no need to include excluded volume interactions
for the handles. The covalent linkers that attach the handles
either to the cysteine residue at the protein N terminus or a point
on the bead surface are modeled as simple harmonic springs with
strength κ = kbond and length ℓ = 1.5 nm.

5.3. Simulation Time Scales. Let μ0 = 1/6πηa be the mobility of
a sphere of radius a = 1 nm, where η = 0.89 mPa · s is the vis-
cosity of water at T = 298 K. This will be the mobility of
our DNA handle beads, whereas for the large polystyrene beads
the corresponding mobility is μb = μ0a/Rb. The rotational diffu-
sion of the polystyrene bead is characterized by a mobility
μrb = 3μ0a=4R3

b. For the protein residues we choose a mobility
μres = 3.36μ0, corresponding to an effective hydrodynamic radius
of 0.30 nm. The characteristic Brownian dynamics time scale
associated with μ0 is τ0 = a2=μ0kBT = 4 ns. To avoid numerical
errors, our simulation time step τ should be a small fraction of τ0,
and we obtained reliable results using τ = 5 × 10−6 τ0 = 0.02 ps.
For LZ26 both with and without handles/beads, we ran ∼260
long trajectories at various force conditions (or trap separations),
totaling to ∼1012 simulation time steps, or 20 ms, with data
collection every 104 steps. (In the case of the simulations in-
volving the GRM hairpin instead of the protein, the time step
τ = 3 × 10−4 τ0 = 1.2 ps, and the total trajectory data for each
GRM parameter set corresponded to 160–180 ms.)

6. FBS: Correcting for the Effects of Electronic Filtering, Time
Averaging, and Noise
Before the data from optical tweezer experiments can be used to
reconstruct the intrinsic biomolecule free-energy landscape, one
must consider the inevitable distortions due to noise, the elec-
tronic systems involved in data recording, and any additional
filtering done as part of the collection protocol. We have de-
veloped a method (FBS) to correct for these distortions. In the
following we first derive the basic FBS scaling relations, and then
verify them using both simulation and experimental data sets.

6.1. FBS Theory.Understanding how the time series of bead positions
is distorted as part of the measurement process requires a detailed
spectral analysis of all components in the dual optical tweezer
apparatus. The spectral properties of the experimental system used
tocollect thedata inourworkhavebeenextensivelycharacterizedby
von Hansen et al. (18), allowing us to develop a simplified theory
which approximates the most important sources of distortion. Our
theory fits all of the experimental data sets under consideration, but
it can be easily modified to include additional complications that
we ignore (for example, cross-talk between the two laser traps) as
well as the details of other experimental setups.
Let zrawtot ðtÞ be the trajectory of bead–bead separations along

the ẑ axis recorded during the experiment. This raw data set is
based on the signal from the silicon photodiode devices that
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measure the deflection of the lasers due to bead displacements.
This output is then processed and amplified by the electronic
system used in the recording apparatus. If ztot(t) is the actual
trajectory of bead displacements, inaccessible to the experi-
mentalist, the recorded output zrawtot ðtÞ is related to ztot(t) as

zrawtot ðtÞ=
Z t

−∞

f
�
t− t′

��
ztot
�
t′
�
+ η
�
t′
��
: [S38]

The deviation of zrawtot ðtÞ from ztot(t) stems from two main effects:
(i) an additive noise component η(t), which includes environmental
noise such as vibrations of the optical elements in the apparatus
and electronic noise in the detectors (18). For simplicity, we model
the noise as Gaussian white noise with zero mean and variance
equal to ν: 〈η(t)〉 = 0, 〈η(t′)〉 = vδ(t − t′), and 〈η(t)ztot(t′)〉 = 0,
where 〈〉 denotes an equilibrium ensemble average; (ii) con-
volution with a kernel function f(t), which reflects the filtering
properties of the photodiodes and electronics. Any additional
time averaging or filtering carried out by the experimentalist on
the recorded data series will be considered explicitly later on,
and is not included in f(t). The analysis of ref. 18. yielded the
following form for the filter kernel in the frequency domain:

f ðωÞ=
�
λ+

1− λ

1− iωτpf

�
1

B8
�
iωτbf

�; [S39]

where for our laser optical tweezer setup λ = 0.6 ± 0.05, τpf =
6 + 1 μs, τbf = 5 μs, and B8(x) is the eighth-order Butterworth
polynomial. The term in the square brackets above originates in
a physical phenomenon known as “parasitic filtering” (19, 20),
arising from the transparency of the silicon in the photodiode to
the laser light with wavelength 1,064 nm used in the experiment:
a fraction 1 − λ of the photocurrent from the detector is pro-
duced with a lag time τpf relative to the photon signal. The
second term in Eq. S39, involving the Butterworth polynomial,
is due to the subsequent electronic amplification of the signal
from the detector, which acts like a Butterworth low-pass filter
with characteristic time scale τbf, such that at the frequency
ω= τ−1bf the signal amplitude is attenuated by 3 dB. Because
the form of Eq. S39 is too complicated for use in our analytical
theory, we will approximate f(t) as a generic first-order low-pass
filter, exploiting the fact that both the parasitic and electronic
terms act to attenuate high-frequency portions of the signal,

f ðωÞ≈ 1
1− iωτf

; [S40]

where τf = 7 μs. This effective filtering time scale τf is derived by
demanding that Eq. S40 exhibit the same degree of attenuation
at ω= τ−1bf as Eq. S39.
Although these distortions are expressed in the frequency

domain, they have observable consequences for the equilibrium
probability distribution of bead–bead separations. As an exam-
ple, consider the raw autocorrelation function CrawðtÞ=
hðzrawtot ðtÞ− zrawtot Þðzrawtot ð0Þ− zrawtot Þi, where zrawtot is the mean recorded
bead–bead separation. The variance of the raw probability dis-
tribution Praw

tot ðzrawtot Þ is equal to Craw(0). From Eqs. S38 and
S40, the raw autocorrelation is related to the true one
CðtÞ= hðztotðtÞ− ztotÞðztotð0Þ− ztotÞi by

CrawðtÞ= ν

2τf
e−t=τf +

Z∞

−∞

dt′
e−jt−t′j=τf

2τf
C
�
t′
�
: [S41]

The first term in Eq. S41, due to noise, tends to increase the
variance Craw(0) relative to C(0). The second term, due to filter-

ing, is always less than C(0) because it is an average over C(t′),
and C(t′ ≠ 0) < C(0). Noise broadens the measured distribution
and filtering narrows it. However, without knowing the ampli-
tude of the noise ν, it is unclear whether the filtering due to the
detectors and electronics under- or overcompensates for the
noise, and how far Praw

tot ðzrawtot Þ deviates from the true distribution
Ptot(ztot). Thus, we need a way to estimate ν.
The situation is even more complicated because the experi-

mentalist may choose to apply additional filtering on the recorded
data, for exampleasawayofmanually removingnoiseandunwanted
high-frequency components of the signal (because the dynamics of
interest typically occurs at frequencies much lower than imposed
filter cutoff). For theGCN4 leucine zipper, the data sets recorded at
100 kHz (corresponding to a sampling time step τs = 10 μs) were
subsequently filtered in real time during collection by averaging
every five consecutive time steps together. Such averaging acts like
a low-pass filter, and so has narrowing effects on the equilibrium
probability distribution qualitatively similar to the filtering de-
scribed above. Some type of additional filtering of this kind is
a common experimental practice (see refs. 21–23 for recent ex-
amples, involving either an averaging or eight-pole Bessel filter). It
turns out, however, that we can take advantage of the filtering
protocol: by varying the degree of filtering we will use it to ap-
proximately extrapolate features of the true probability distribution.
Let us concentrate on the simple case of filtering the recorded

data by averaging every n consecutive points into a single value. If
the collection time step is τs, the original raw data are repre-
sented by the recorded time series fzrawtot ðtjÞg, where tj ≡ jτs for j =
1,2,3,. . . The averaged data are a time series fzraw;ntot ðtnjÞg, where
zraw;ntot ðtnjÞ= n−1

Pi=nj
i=nj−n+1z

raw
tot ðtiÞ. For the averaged time series we

will focus on two quantities, both related directly to its auto-
correlation Craw,n(t): the variance hðzraw;ntot − zraw;ntot Þ2i=Craw;nð0Þ,
and the mean-squared displacement (MSD) between consecu-
tive points hðzraw;ntot ðnτsÞ− zraw;ntot ð0ÞÞ2i= 2ðCraw;nð0Þ−Craw;nðnτsÞÞ≡
Δraw;nðnτsÞ. In a more complicated fashion, these two quantities
can also be expressed in terms of the original autocorrelation
Craw,1(t) = Craw(t) before averaging:

Craw;nð0Þ= 1
n
Crawð0Þ+ 2

n2
Xn−1

j= 1

ðn− jÞCrawðjτsÞ;

Δraw;nðnτsÞ= 2
n
Crawð0Þ+ 2

n2
Xn

j= 1

ð2n− 3jÞCrawðjτsÞ

−
2
n2
Xn−1

j= 1

ðn− jÞCrawððn+ jÞτsÞ: [S42]

We know that Craw(t) is related to the unknown true corre-
lation C(t) through Eq. S41, so we can complete the theoret-
ical description by specifying a form for C(t). A generic cor-
relation function can be expanded as a sum of exponentials
CðtÞ=P∞

i=1Aiexpð−t=τiÞ, with relaxation times τ1 < τ2 <. . . We
will be interested in correlations on the shortest accessible time
scales, t ∼ O(τs), so we plug the expression for C(t) into Eq. S41
and expand for small t, keeping the contribution from the τ1
exponential and lowest-order corrections from the τi>1 terms:

CrawðtÞ= ν

2τf
e−t=τf +

X∞

i= 1

Aiτi
τ2i − τ2f

�
τie−t=τi − τf e−t=τf

�

≈
ν

2τf
e−t=τf +

A1τi
τ21 − τ2f

�
τ1e−t=τ1 − τf e−t=τf

�
+Ac −Bc

�
t+ tf e−t=τf

�
;

[S43]

where Ac =
P∞

i=2Ai, Bc = A2/τ2. If necessary, the expansion can
be extended to higher orders, but the above form was sufficient
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to fit all of the simulation and experimental cases which we
analyze below.
Eqs. S42 and S43 completely define the variance Craw,n(0) and

MSD Δraw,n(nτs) in terms of five unknown parameters: ν, A1, τ1,
Ac, and Bc. By averaging the recorded time series fzrawtot ðtjÞg for
different values of n (varying the effective filter bandwidth), we
construct curves of Craw,n(0) and MSD Δraw,n(nτs) as a function
of n. Fitting these curves to Eqs. S42 and S43, we can then ex-
tract the unknown parameters. This allows us to estimate the
true variance of the probability distribution,

Cð0Þ=A1 +Ac: [S44]

Because we are using properties of time series at different
effective bandwidths to gain information about the true, “infinite”
bandwidth limit, we call our method finite bandwidth scaling
(FBS). The analogy is to finite size scaling (24), where thermo-
dynamic properties of systems on finite lattices are extrapolated
to the infinite lattice limit. One of the nice features of FBS is that
the scaling analysis can be carried out even when we can only
calculate Craw,n(0) and Δraw,n(nτs) for a subset of n values. For
example, in the leucine zipper case below, the available time
series corresponds to n = 5 because the data were time averaged
during collection. From the n = 5 data we can construct trajec-
tories for n = 10, 15, 20,. . . This subset is sufficient for the FBS
extrapolation.
Once we know C(0), how can we use it to approximately re-

construct the true distribution Ptot(ztot)? Keep in mind that the
variance Cð0Þ= hz2toti− hztoti2 =

R
dzðz− hztotiÞ2PtotðzÞ. The sim-

plest estimate for Ptot(ztot) is to start with the measured, aver-
aged distribution Praw;n

tot for some n, and deform it in one of two
ways, changing its variance by an amount δC = jC(0) − Craw,n(0)j:
i) If Craw,n(0) < C(0), we carry out a convolution with a normal-
ized Gaussian of variance δC,

PtotðztotÞ≈
Z∞

−∞

dzPraw;n
tot ðztot − zÞ e

−z2=2δc
ffiffiffiffiffiffiffiffiffiffi
2πδC

p : [S45]

ii) If Craw,n(0) > C(0), we do a deconvolution instead, solving

Praw;n
tot ðztotÞ≈

Z∞

−∞

dzPtotðztot − zÞ e
−z2=2δc
ffiffiffiffiffiffiffiffiffiffi
2πδC

p [S46]

for Ptot. The latter can be carried out using the numerical de-
convolution technique described in SI Text, section 1.6. After the
deformation, the estimated Ptot will, by construction, have the
correct variance C(0). We should recover roughly the same Ptot
starting from Praw;n

tot for any n in the range where the FBS scaling
is valid, as we will demonstrate in the examples below. In systems
with multiple states, where there is more than one peak in the
measured distribution, it is more accurate to carry out the FBS
analysis separately on each state, and apply the corresponding
specific deformation for each peak. This can be done with the aid
of hidden Markov model (HMM, ref. 25) partitioning of the time
series, as described in the next section for the case of the GRM
and leucine zipper.
The FBS method has several limitations: (i) using a Gaussian

to deform Praw;n
tot into Ptot is an assumption, because all we

strictly know that the actual point-spread function is the variance
δC. The smaller the variance, the more valid the assumption,

because the potential non-Gaussian contributions to the point-
spread function become less significant. We can also test the
assumption from our measured data by checking whether the
Praw;n

tot for various n can be mapped to each other by Gaussian
deformations. For all of the systems analyzed in our work this is
indeed the case. (ii) Gaussian deformations map individual
peaks into slightly broader or narrower peaks, but do not pro-
duce new peaks. Hence, if there is a state with a very short
lifetime that is smeared out by the filtering (either the parasitic,
electronic, or additional filtering), yielding no distinct peak in
Praw;n

tot , the FBS method will not be able to reconstruct its
properties. Whether or not the experimentalist chooses to do
additional averaging, the intrinsic time resolution τf of the ap-
paratus puts fundamental constraints on what we can learn from
the measured time series. Transitions occurring on time scales
faster than τf will be lost to us. (iii) In a similar way, the char-
acteristic relaxation times of the trapped beads also impose
limits. To illustrate this, take two protein states S1 and S2, which
have a small difference in their mean end-to-end distance along
the force direction, and assume S1 is only accessible from S2. If
the mean lifetime of S1 is much smaller than S2, such that it is
shorter than the bead relaxation time, transitions such as S2 →
S1 → S2 will correspond only to negligible excursions in the
measured trajectory of bead displacements, because the beads
do not have enough time to relax to the equilibrium position
associated with S1 before the protein returns to S2. If the mean-
squared distance of the excursions is smaller than the noise
amplitude in the recorded time series, the existence of state S1
will be hidden from the experimentalist, regardless of the ap-
paratus filtering time scale τf. In summary, the distribution pro-
duced by FBS is an approximation to the truth: the method can
correct distortions produced by noise and filtering, but it only
works for states in the energy landscape which leave some sig-
nature of themselves in the measured time series.

6.2. Testing FBS on Simulation and Experimental Data. As a first test
of the FBS theory, we analyze a Brownian dynamics simulation
trajectory of the GRMmodel in an optical tweezer setup (Fig. 4).
The trap separation ztrap = 1,298 nm; all of the other parameters
are listed in Table S1. A computer simulation has perfect re-
cording of data, with no environmental noise or apparatus fil-
tering effects, hence it can test the FBS theory of Eqs. S42 and
S43 in the limit ν = τf = 0. In this case the true distribution is just
the n = 1 raw distribution Praw

tot =Praw;1
tot , plotted in Fig. S4A (gray

curve). If the FBS scaling is valid, we should be able to map any
distribution for n > 1 onto the n = 1 result by applying the FBS
correction procedure described above.
The GRMmodel exhibits two states, native N and unfolded U,

which have distinct dynamical properties. Hence, it is more ac-
curate to apply the FBS method separately to just those portions
of the time series belonging to each state. Partitioning the time
series by state requires estimating the most likely sequence of
states that corresponds to the data. HMM (25) is a general tool
for this task. The probability distribution can be accurately de-
composed into Gaussians corresponding to each state, as de-
picted in Fig. S4A, which define likelihoods for any observed ztot
data point in the trajectory to belong to one or the other state.
We then process the entire trajectory through the Baum–Welch
algorithm (26) to find optimal values for the unknown transition
probabilities between states, and finally construct the most likely
state sequence using the Viterbi algorithm (27). Fig. S4B shows
a fragment of the trajectory, colored according to the state as-
signment resulting from HMM.
The variance Craw,n(0) and MSD Δraw,n(nτs) are then calcu-

lated as a function of n from the trajectory fragments belonging
to a certain state. For a given n, the calculation involves aver-
aging over data points within a time window up to 2nτs in length,
so getting good statistics requires having many fragments longer
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than 2nτs. This will be true so long as 2nτs is much smaller than
the mean lifetime of the state, putting a practical upper bound
on n. Fig. S4 C andD plots the results for Craw,n(0) and Δraw,n(nτs),
respectively (blue points: N state; red points: U state). Bars rep-
resent statistical SE due to finite sample size, as determined
through jackknife estimation (28). The solid curves are fits to Eqs.
S42 and S43, from which we extract the FBS parameter values
listed in Table S2.
With these values in hand, we can carry out the correction

procedure: Fig. 4D shows the raw distributions Praw;n
tot for n = 1,

50, 100, 150 (solid curves), and E shows the same distributions
after they have been corrected according to the method outlined
above (n = 1 needs no correction, but is included for compari-
son). The greater the degree of averaging (increasing n), the
narrower the peaks in Praw;n

tot . However, the FBS method com-
pensates for this, and all of the distributions in E have collapsed
onto a single estimate for the true Ptot. As expected, this esti-
mate agrees very well with the n = 1 result Praw

tot (cyan points).
The second test of the FBS theory is on experimental data for

a system with only dsDNA handles and beads, discussed in SI
Text, section 2. FBS results for three different trajectories (cor-
responding to three values of the mean force F0) are presented
in Fig. S5. These data sets were recorded with a sampling rate of
100 kHz (τs = 10 μs), with no additional averaging beyond the
unavoidable filtering effects of the detectors and electronics. As
a consequence of these effects, Praw;1

tot is not the same as the true
distribution, and the deviation grows larger as n is increased. The
FBS best-fit results are shown in Table S2. In the fitting the noise
amplitude ν is constrained to be the same among all three tra-
jectories, because they are all collected on the same equipment.
As in the previous example, Praw;n

tot for various n can all be col-
lapsed onto a single estimate for Ptot through the FBS method.
In Fig. S5E this estimate (solid curves) is compared with Praw;1

tot
(dashed curves) to emphasize that the distortions due to appa-
ratus filtering are small but noticeable.
The final test is on the GCN4 leucine zipper experimental time

series (trajectory 1, with parameters described in Table S1). As
mentioned earlier, here we only can construct averaged data sets
for n = 5, 10, 15, . . .. The n = 1 trajectory, at the original τs = 10-
μs sampling interval, is not available. Despite this limitation, the
FBS scaling analysis works nicely, with results summarized in Fig.
S6 and Table S2. We took advantage of the fact that the handle-
only data sets, collected with the same optical tweezer setup as
the leucine zipper (except with no protein), had direct in-
formation about n = 1 time scales, and thus probed higher fre-
quencies than were accessible in the leucine zipper data. Because
going to higher frequencies gives us better estimates of the
background noise, we set the noise amplitude ν in the leucine
zipper case to the best-fit value from the handle-only analysis. All
other FBS parameters were fit individually for each state (I1, I2,
and U) in the leucine zipper distribution. With FBS corrections,
Praw;n

tot for n going up to 25 (effective bandwidths as low as 4 kHz)
all collapse onto a single estimate of the true Ptot.

7. Estimating Uncertainties in the Free-Energy
Reconstruction
The free-energy reconstruction is only as good as the data on
which it is based: the recorded time series which is the input, and

the information about the apparatus which is used to analyze the
time series and predict the intrinsic landscape. Both of these are
subject to uncertainties, which will propagate into the final result.
Let us first consider statistical uncertainties due to the finite
length of the trajectories from which the input probability dis-
tribution Praw

tot is determined. One of the advantages of the
double optical trap setup is that it is exceptionally stable, al-
lowing for data collection over periods >100 s. In the case of the
leucine zipper, the slowest transition (from U to I2) occurs on
time scales of 0.4–0.6 s in the force range of interest, so even
a single trajectory contains ∼O(102) of the rarest observed
conformational changes.
Thus, the distribution Praw

tot has small statistical uncertainties.
To quantitatively estimate the error, we use a block bootstrap
method (29, 30) in the following manner: The trajectory is di-
vided into blocks of length larger than the longest autocorrela-
tion time, and a synthetic data set of the same length is
generated by sampling with replacement from this set of blocks.
Using a large number of synthetic data sets (>500) we can de-
termine confidence intervals for each point in the Praw

tot distri-
bution. The number of blocks is varied until convergence is
achieved in the error estimate. The results are shown in Fig. S7 A
and B for two leucine zipper experimental trajectories (param-
eters as in Table S1). The Praw

tot distributions (black curves) are
surrounded by dark blue bands which represent the 68% confi-
dence interval, or SE margin. The median error in the z range
where Praw

tot > 10−6, is 10% and 19%, respectively, for the two
trajectories.
In reconstructing the intrinsic free-energy landscape ~F p, this

statistical error is compounded by uncertainties in all of the
apparatus parameters that are used in the analysis: bead radii,
trap strengths, handle properties, as listed in Table S1, as well as
uncertainties in the FBS parameters used to correct the raw
distributions (Table S2). We perform a Monte Carlo error esti-
mate by sampling from Gaussian distributions of these parame-
ters with SDs given by the uncertainties, and for each parameter
set performing the complete free-energy reconstruction on the
entire ensemble of synthetic data sets generated by the block
bootstrap. To analyze the shape differences among the re-
constructed landscapes, every ~F p is projected to the midpoint
value of F0, where the probabilities of states I1 and U are equal.
(F0 = 12.3 ± 0.9 pN and 12.1 ± 0.9 pN from trajectories 1 and 2,
respectively.) Although computationally intensive, this pro-
cedure allows us to estimate 68% confidence intervals for ~F p,
shown as light blue bands for the two trajectories in Fig. S7 C
and D. For comparison, if one assumed no uncertainty in the
apparatus parameters, one would get the much narrower dark
blue bands, representing just the error in ~F p from the finite
sampling of Praw

tot . Clearly, the uncertainties in the apparatus
parameters are the predominant source of error.
With both apparatus and sampling uncertainties included, the

median SE over the z range where ~F p < − kBTln ð10−6Þ≈ 14kBT
is 10% in both trajectories. This corresponds to ∼0.4kBT devia-
tions in the shape of the landscape. The median difference be-
tween ~F p estimated from the two trajectories in this range is
0.3kBT, and hence our free-energy analysis gives a consistent
result, within SE, between the two different experimental runs.
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Fig. S1. (A) Schematic illustration (not to scale) of the covalent linkers which attach the handle to the bead on one end, and the handle to the protein on the
other end. (B) GRM within the optical tweezer.
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Fig. S2. Experimental (blue solid curves) and theory (red solid curves) results for a system containing only dsDNA handles and beads. The apparatus pa-
rameters and theoretical best-fit values are described in SI Text, section 2. The same set of best-fit parameters is used for all of the theory curves. (A) Force F vs.
total extension z from an experimental pulling trajectory, compared with the theoretical mean extension as a function of force. (B–D) Total bead–handle
probability end-to-end distance distributions ~Pbh (blue solid curves) derived from three experimental runs at different constant trap separations, corresponding
to mean forces of 9.4 ± 0.7, 11.5 ± 0.8, and 12.7 ± 0.9 pN, respectively. In each case the experimental data are corrected for noise/filtering effects using the FBS
method (SI Text, section 6), and transformed into the constant force ensemble using Eq. 1, with F0 chosen to be equal to the mean force value in the trajectory.
The distance scale is centered at z, the mean extension. The light blue shaded region around each blue curve represents the SE margin for every point in the
distribution (68% confidence band). For comparison, the experimental results omitting the FBS corrections are shown as gray dashed lines.

Fig. S3. GRM free energy ~FGRM after deconvolution for three different values of the force F0: (A) 9.9 pN; (B) 11.9 pN; (C) 14 pN. In each case, results for two
different trap strengths ktrap = 0.25, 2.5 pN/nm are shown as solid lines of different color. Exact analytical solutions are drawn as dashed lines. The z scale is
plotted relative to zmin, the location of the minimum in the free energy.
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Fig. S4. FBS analysis of a GRM Brownian dynamics simulation (ztrap = 1,298 nm; all other parameters as in Table S1). (A) Probability distribution of the bead–
bead separation from the raw simulation data, Praw

tot (gray), and the decomposition into individual Gaussian peaks corresponding to the N (blue) and U (red)
states. Distances are measured with respect to z, the mean bead–bead separation. (B) Sample time series fragment from the simulation, with the individual
data points colored according to their assignment to the N (blue) and U (red) states by HMM analysis. (C) For the raw time series filtered by averaging together
every n data points, the variance Craw,n(0) as a function of n. The time series corresponding to each state, N and U, is analyzed separately, and plotted as blue
and red points respectively, with bars denoting SE due to finite sampling. Solid curves are the FBS theoretical fits to Craw,n(0) (Eq. S42). Best-fit FBS parameters
are listed in Table S2. (D) Analogous to C, except showing the MSD function Δraw,n(nτs) for consecutive pairs of points in the averaged time series. (E) Raw
distributions Praw;n

tot for the averaged time series at n = 1, 50, 100, 150. (F) Solid curves: distribution Ptot estimated by applying the appropriate FBS correction to
the raw distributions in E. There are four curves, but due to overlapping they appear as one. Points: raw distribution Praw;n

tot for n = 1 (no averaging), which for
the GRM case is the true distribution, because there are no noise or apparatus filtering effects in the simulation.
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Fig. S5. FBS analysis of experimental results for a system containing only dsDNA handles and beads (see SI Text, section 2 for apparatus parameters). We
analyze three separate trajectories at different constant trap separations, corresponding to mean forces F0 = 9.4 ± 0.7, 11.5 ± 0.8, and 12.7 ± 0.9 pN. Results in
each panel are labeled by the F0 value of the trajectory. (A) For the raw experimental time series filtered by averaging together every n data points,
the variance Craw,n(0) as a function of n. Results are plotted as points, with bars denoting SE due to finite sampling. Solid curves are the FBS theoretical fits to
Craw,n(0) (Eq. S42). Best-fit FBS parameters are listed in Table S2. (B) Analogous to A, except showing the MSD function Δraw,n(nτs) for consecutive pairs of points
in the averaged time series. (C) Raw distributions Praw;n

tot for the averaged time series at n = 1, 2, 5, 10. Each row corresponds to a different trajectory. (D) Solid
curves: distribution Ptot estimated by applying the appropriate FBS correction to the raw distributions in C. For each trajectory there are four curves, but due to
overlapping they appear as one. Dashed curves: raw distribution Praw;n

tot for n = 1. Although this distribution is free of any additional time averaging carried out
on the recorded time series, it is subject to parasitic and electronic filtering effects intrinsic to the apparatus. These distortions are corrected by FBS, and hence
the dashed and solid curves are distinct.
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Fig. S6. FBS analysis of a GCN4 leucine zipper experiment (trajectory 1, with parameters given in Table S1). (A) Probability distribution of the bead–bead
separation from the raw experimental data, Praw

tot (gray), and the decomposition into individual Gaussian peaks corresponding to the I1 (red), I2 (green), and U
(blue) states. Distances are measured with respect to zI1, the position of the I1 peak. (B) Sample time series fragment from the experiment, with the individual
data points colored according to their assignment to the I1 (red), I2 (green), and U (blue) states by HMM analysis. (C) For the raw time series filtered by
averaging together every n data points, the variance Craw,n(0) as a function of n. Time series corresponding to each state are analyzed separately, and plotted
as points in distinct colors, with bars denoting SE due to finite sampling. Solid curves are the FBS theoretical fits to Craw,n(0) (Eq. S42). Best-fit FBS parameters
are listed in Table S2. (D) Analogous to C, except showing the MSD function Δraw,n(nτs) for consecutive pairs of points in the averaged time series. (E) Raw
distributions Praw;n

tot for the averaged time series at n = 5, 10, 15, 20, 25. (F) Solid curves: the distribution Ptot estimated by applying the appropriate FBS
correction to the raw distributions in E. There are five curves, but due to overlapping they appear as one. Dashed curve: raw distribution Praw;n

tot for n = 5.
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Fig. S7. Estimation of uncertainty in the free-energy reconstruction, as discussed in SI Text, sections 7 A and B. (A and B) Probability distributions Praw
tot of the

raw time series for total bead–bead separation (black curves) collected during two experimental runs (left/right columns; see Table S1 for parameters). Dis-
tances are measured with respect to zI1, the position of the I1 peak. Dark blue band corresponds to the SE (68% confidence interval) for each point in the
distribution, due to finite sampling. (C and D) Corresponding intrinsic protein free energy ~F p (black curves), as calculated using the procedure described in the
main text. The free energies are in the constant-force ensemble, at the midpoint force value F0, where the probability of being in states I1 and U is equal (F0 =
12.3 ± 0.9 pN for run 1; 12.1 ± 0.9 pN for run 2). Dark blue band represents SE (68% confidence interval) including just the uncertainty due to finite sampling;
wider light blue band is the SE including all sources of uncertainty (sampling and apparatus parameters).

Table S1. Parameters used in the GRM model and SOP simulation of the LZ26 leucine zipper,
together with the corresponding quantities from two experimental runs (10)

Parameter GRM SOP simulation Experiment

Bead: Rb, nm 500 100 500 ± 25
Trap: ztrap, nm 1,294 483–543 1,553 ± 1, 1,547 ± 1†

Trap: ktrap, pN/nm 0.25 0.25 0.25 ± 0.03, 0.27 ± 0.03‡

Trap: α 1/3 1/3 Unknown
Handle: L, nm 100 100 188 ± 2
Handle: lp, nm 20 20 20 ± 2
Handle: γ, pN 2,780 2,780 400 ± 40
Linker: κ , kcal/mol·nm2 200 200 200§

Linker: ι, nm 1.5 1.5 1.5

†Different separations correspond to two folding trajectories.
‡Left, right trap strengths.
§Linker characteristics are assumed for the experimental case.
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Table S2. Parameters used in the FBS analysis of simulation and experimental systems (SI Text, section 6)

Case τs (μs) τf (μs) ν (nm2 μs) A1 (nm2) τ1 (μs) Ac (nm
2) Bc (nm

2/μs)

Simulation: GRM
State N 0.024 0 0 2.2 ± 1.2 3.2 ± 1.0 3.1 ± 1.2 0.24 ± 0.15
State U 0.024 0 0 1.6 ± 0.2 2.1 ± 0.2 2.6 ± 0.2 0.22 ± 0.04

Experiment: dsDNA handles (no protein)
F0 = 9.4 pN 10 7 31.8 ± 1.5 5.0 ± 0.2 14.7 ± 1.8 3.2 ± 0.2 0.0077 ± 0.0020
F0 = 11.5 pN 10 7 31.8 ± 1.5 4.0 ± 0.2 12.6 ± 1.4 3.0 ± 0.1 0.0079 ± 0.0012
F0 = 12.7 pN 10 7 31.8 ± 1.5 3.3 ± 0.2 11.5 ± 1.2 2.9 ± 0.1 0.0076 ± 0.0008

Experiment: GCN4 leucine zipper (trajectory 1)
State I1 10 7 31.8 ± 1.5 3.9 ± 0.2 28.1 ± 5.0 3.5 ± 0.2 0.0066 ± 0.0010
State I2 10 7 31.8 ± 1.5 8.6 ± 0.6 41.9 ± 8.0 4.2 ± 0.8 0.0069 ± 0.0036
State U 10 7 31.8 ± 1.5 7.6 ± 0.1 23.7 ± 1.7 3.2 ± 0.1 0.0065 ± 0.0007

Experiment: GCN4 leucine zipper (trajectory 2)
State I1 10 7 31.8 ± 1.5 4.1 ± 0.1 28.1 ± 3.5 3.5 ± 0.2 0.0069 ± 0.0008
State I2 10 7 31.8 ± 1.5 8.3 ± 1.0 41.3 ± 12.0 5.3 ± 1.3 0.0074 ± 0.0053
State U 10 7 31.8 ± 1.5 8.1 ± 0.2 23.6 ± 2.2 3.2 ± 0.2 0.0066 ± 0.0009
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