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Time-resolved single-molecule biophysical experiments yield data
that contain a wealth of dynamic information, in addition to the
equilibrium distributions derived from histograms of the time
series. In typical force spectroscopic setups the molecule is con-
nected via linkers to a readout device, forming a mechanically
coupled dynamic network. Deconvolution of equilibrium distribu-
tions, filtering out the influence of the linkers, is a straightforward
and common practice. We have developed an analogous dynamic
deconvolution theory for the more challenging task of extracting
kinetic properties of individual components in networks of arbi-
trary complexity and topology. Our method determines the intrin-
sic linear response functions of a given object in the network,
describing the power spectrum of conformational fluctuations.
The practicality of our approach is demonstrated for the particular
case of a protein linked via DNA handles to two optically trapped
beads at constant stretching force, which we mimic through
Brownian dynamics simulations. Each well in the protein free
energy landscape (corresponding to folded, unfolded, or possibly
intermediate states) will have its own characteristic equilibrium
fluctuations. The associated linear response function is rich in
physical content, because it depends both on the shape of the well
and its diffusivity—a measure of the internal friction arising from
such processes as the transient breaking and reformation of
bonds in the protein structure. Starting from the autocorrelation
functions of the equilibrium bead fluctuations measured in this
force clamp setup, we show how an experimentalist can accurately
extract the state-dependent protein diffusivity using a straightfor-
ward two-step procedure.

optical tweezer ∣ spectral analysis ∣ fluctuation–dissipation relation ∣
coordinate-dependent diffusion

Force spectroscopy of single biomolecules relies most com-
monly on atomic force microscope (AFM) (1–7) or optical

tweezer (8–13) techniques. By recording distance fluctuations un-
der applied tension, these experiments serve as sensitive probes
of free energy landscapes (8–11, 13), and structural transforma-
tions associated with ligand binding or enzymatic activity (3, 6, 7).
All such studies share an unavoidable complication: The signal of
interest is the molecule extension as a function of time, but the
experimental output signal is an indirect measure like the deflec-
tion of the AFM cantilever or the positions of beads in optical
traps. The signal is distorted through all elements in the system,
which in addition typically include polymeric handles such as
protein domains or double-stranded DNA, which connect the
biomolecule to the cantilever or bead. As shown in the case of an
RNA hairpin in an optical tweezer (14), handle fluctuations lead
to nontrivial distortions in equilibrium properties like the energy
landscape as well as dynamic quantities like folding/unfolding
rates. If an accurate estimate of the biomolecule properties is the
goal, then one needs a systematic procedure to subtract the ex-
traneous effects and recover the original signal from experimen-
tal time-series data.

Static deconvolution, which operates on the equilibrium distri-
bution functions of connected objects, is a well-known statistical
mechanics procedure and has been successfully applied to
recover the free energy landscapes of DNA hairpins (9, 10) and
more recently of a leucine zipper domain (13). In contrast, for

dynamic properties of the biomolecule, no comprehensive decon-
volution method exists. Handles and beads have their own dissi-
pative characteristics and will tend to suppress the high-frequency
fluctuations of the biomolecule and as a result distort the mea-
sured power spectrum. In the context of single-molecule pulling
experiments, theoretical progress has been made in accounting
for handle/bead effects on the observed unfolding transition
rates (15–18). However, the full intrinsic fluctuation spectrum,
as encoded in the time-dependent linear response function, has
remained out of reach. The current work presents a systematic
dynamic deconvolution procedure that fills this gap, providing
a way to recover the linear response of a biomolecule integrated
into a mechanical dissipative network. We work in the constant
force ensemble as appropriate for optical force clamp setups with
active feedback mechanisms (19, 20) or passive means (12, 21).
Although our theory is general and applies to mechanical net-
works of arbitrary topology, we illustrate our approach for the
specific experimental setup of ref. 13: a protein attached to op-
tically trapped beads through dsDNA handles. The only inputs
required by our theory are the autocorrelation functions of the
bead fluctuations in equilibrium. We demonstrate how the results
from two different experimental runs—one with the protein,
and one without—can be combined to yield the protein linear
response functions.

We apply this two-step procedure on a force clamp setup
simulated through Brownian dynamics and verify the accuracy
of our dynamic deconvolution method. Knowledge of mechan-
ical linear response functions forms the basis of understanding
viscoelastic material properties; the protein case is particularly
interesting because every folding state, i.e., each well in the free
energy landscape, will have its own spectrum of equilibrium fluc-
tuations and hence a distinct linear response function. Two key
properties determine this function: the shape of the free energy
around the minimum, and the local diffusivity. The latter has
contributions both from solvent drag and the effective roughness
of the energy landscape—internal friction due to molecular
torsional transitions and the formation and rupture of bonds be-
tween different parts of the peptide chain. The diffusivity profile
is crucial for getting a comprehensive picture of protein folding
kinetics, and arguably it is just as important as the free energy
landscape itself for very fast folding proteins (22–24). Our
dynamic deconvolution theory provides a promising route to ex-
tract this important protein characteristic from future force
clamp studies.

Results and Discussion
Force Clamp Experiments and Static Deconvolution. As a represen-
tative case, in this paper we consider the double trap setup shown
in Fig. 1A, which typically involves two optically trapped polystyr-
ene beads of radius ∼Oð102 nmÞ, two double-stranded DNA
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handles, each ∼Oð102 nmÞ, attached to a protein in the center
(13). For fixed trap positions and sufficiently soft trapping poten-
tials, the entire system will be in equilibrium at an approximately
constant tension F. We are interested in a force regime
(F ≳ 10 pN in the system under consideration) where the handles
are significantly stretched in the direction parallel to the applied
force (chosen as the z axis), and rotational fluctuations of the
handle-bead contact points are small. Because the experimental
setup is designed to measure the z separation of the beads as a
function of time, we focus entirely on the dynamic response of
the system along the z direction. However, the methods below
can be easily generalized to the transverse response as well.
Though we consider only a passive measurement system in our
analysis, an active feedback loop that minimizes force fluctua-
tions can also be incorporated, as an additional component with
its own characteristic dynamic response (with the added compli-
cation that the response of the feedback mechanism would have
to be independently determined).

To set the stage for our dynamic deconvolution theory, we
first illustrate the static deconvolution for two objects X and Y
connected in series under constant tension F, e.g., a protein and
a handle. Let PX ðzÞ and PY ðzÞ be the constant-force probability
distributions for each of these objects having end-to-end distance
z. The total system end-to-end distribution is given by PXY ðzÞ ¼
∫ dz0PX ðz0ÞPY ðz − z0Þ. In terms of the Fourier-transformed distri-
butions, this can be stated simply through the ordinary convolu-
tion theorem, ~PXY ðkÞ ¼ ~PX ðkÞ ~PY ðkÞ. If PXY is derived from
histograms of the experimental time series, and if PY can be es-
timated independently (either from an experiment without the
protein, or through theory), then we can invert the convolution
relation to solve for the protein distribution PX and thus extract
the folding free energy landscape. A similar approach works for
multiple objects in series or in parallel.

Dynamic Response Functions. Before we consider dynamic net-
works, we define the linear response of a single object under
constant stretching force F along the z direction, as shown in
Fig. 1B. Imagine applying an additional small oscillatory force
fL expð−iωtÞ along the z axis to the left end. The result will be
small oscillations zL expð−iωtÞ and zR expð−iωtÞ of the two ends
around their equilibrium positions. The complex amplitudes zL
and zR are related to fL through linear response: zL ¼ Jself;LðωÞfL,
zR ¼ JcrossðωÞfL, defining the self-response function Jself;LðωÞ of
the left end and the cross-response function JcrossðωÞ. If the oscil-
latory force is applied instead at the right end, the response takes
the form zR ¼ Jself;RðωÞfR, zL ¼ JcrossðωÞfR. Note that because
the object is in general asymmetric, Jself;LðωÞ and Jself;RðωÞ are
distinct functions. However, there is only a single cross-response
[in the absence of time-reversal breaking effects such as magnetic
fields (25)]. For the purposes of dynamic deconvolution of a
network, these three response functions contain the complete dy-
namical description of a given component and are all we need. It
is convenient to define the end-to-end response function JeeðωÞ,
with zR − zL ¼ JeeðωÞf , where the oscillatory force f expð−iωtÞ
is applied simultaneously to both ends of the object in opposite
directions. This response turns out to be a linear combination of
the other functions: Jee ¼ Jself;L þ Jself;R − 2Jcross.

As an illustration we take the simplest, nontrivial example:
two spheres with different mobilities μL and μR connected by
a harmonic spring of stiffness k. In water we are typically in
the low Reynolds number regime and an overdamped dynamical
description is appropriate. If an oscillating force of amplitude fL
is applied to the left sphere, its velocity will oscillate with the
amplitude −iωzL ¼ μLðfL þ k½zR − zL�Þ, whereas the velocity am-
plitude of the right sphere is given by −iωzR ¼ −μRk½zR − zL�.
Using the above definitions of the response functions we
obtain

Jself;L ¼ μLðωþ iμRkÞ
ωðμk − iωÞ ; Jcross ¼

iμLμRk
ωðμk − iωÞ ;

Jee ¼
μ

μk − iω
;

[1]

where μ ¼ μL þ μR. By symmetry Jself;R is the same as Jself;L with
subscripts L and R interchanged. The end-to-end response Jee
has a standard Lorentzian form. For more realistic force trans-
ducers, such as semiflexible polymers, Jee will later be written
as a sum of Lorentzians reflecting the polymer normal modes.
Note that when k ¼ 0, and the spheres no longer interact,
Jself;L ¼ iμL∕ω, the standard result for a diffusing sphere, and
Jcross ¼ 0, as expected, because there is no force transmission
from one sphere to the other.

Though all the linear response functions are defined in terms
of an external oscillatory force, in practice one does not need to
actually apply such a force to determine the functions experimen-
tally. As described in the two-step deconvolution procedure be-
low, one can extract them from measurements that are far easier
to implement in the lab, namely by calculating autocorrelation
functions of equilibrium fluctuations.

Dynamic Convolution of Networks. Based on the notion of self
and cross-response functions, we now consider the dynamics of
composites. We explicitly display the convolution formulas for
combining two objects in series and in parallel; by iteration
the response of a network of arbitrary topology and complexity
can thus be constructed. As shown in Fig. 1C, assume we have two
objects X and Y connected by a spring. X is described by response
functions JXself;L, J

X
self;R, and JXcross, and we have the analogous set

for Y . The internal spring is added for easy evaluation of the

A

B

C

D

Fig. 1. (A) Double optical tweezer force clamp setup for the study of equili-
brium protein dynamics, with soft traps approximating a constant tension
F. (B) To define linear response functions, consider an individual component
at tension F. A small additional oscillatory force fL expð−iωtÞ applied at
the left end leads to endpoint oscillations with amplitudes zL ¼ Jself;LðωÞfL
and zR ¼ JcrossðωÞfL, which defines the self- and cross-response functions.
(C) Two objects X and Y connected in series behave as a composite object
XY whose response functions can be derived through simple rules (Eq. 2)
from the individual X and Y response functions. (D) Schematic representation
of the optical tweezer setup consisting of beads (B), double-stranded DNA
handles (H), and protein (P), with connecting springs.
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force acting between the objects; it is eliminated at the end by
sending its stiffness to infinity. We would like to know the re-
sponse functions of the composite XY object, JXY

self;X , J
XY
self;Y , and

JXY
cross, where the X and Y labels correspond to left and right ends,
respectively. The rules (with the full derivation in SI Text) read

JXY
self;X ¼ JXself;L −

ðJXcrossÞ2
JXself;R þ JYself;L

;

JXY
self;Y ¼ JYself;R −

ðJYcrossÞ2
JXself;R þ JYself;L

;

JXY
cross ¼

JXcrossJYcross
JXself;R þ JYself;L

: [2]

The rules for connecting two objects in parallel are more straight-
forward and read GXY

α ¼ GX
α þGY

α , where α is any one of the
function categories (self, cross, or end-to-end), and G denote
the inverse response functions. One particularly relevant realiza-
tion for parallel mechanical pathways are long-range hydrody-
namic coupling effects, which experimentally act between
beads and polymer handles in the force clamp setup. We derive
the parallel rule and show an example hydrodynamic application
in SI Text. For simplicity, however, we will concentrate in our ana-
lysis on serial connections. To proceed, if we set X ¼ H and
Y ¼ B, we can obtain the response functions of the composite
handle-bead (HB) object, JHB

α , if we know the response functions
of the bead and handle separately. Our full system in Fig. 1D is
just the protein sandwiched between two HB components (or-
iented such that the handle ends of each HB are attached to
the protein). The total system response functions (denoted by
“2HBþ P”) in terms of the individual protein and HB functions
result by iterating the pair convolution in Eq. 2 twice. In particu-
lar, the end-to-end response J2HBþP

ee is given by

J2HBþP
ee ¼ 2JHB

self;B −
2ðJHB

crossÞ2
JHB
self;H þ JPee∕2

: [3]

This is a key relation, because we show below that both J2HBþP
ee

and the three HB response functions JHB
self;H, J

HB
self;B, and JHB

cross can
be derived from force clamp experimental data. Hence Eq. 3
allows us to estimate the unknown protein response function JPee.

We note a striking similarity to the signal processing scenario
(26), where the output of a linear time-invariant (LTI) network
(e.g., an RLC electric circuit) is characterized through a “transfer
function.” For such networks, combination rules in terms of
serial, parallel, and feedback loop motifs exist. The result for
JXY
self;X in Eq. 2 can be seen in a similar light: The first term is
the self-response JXself;L of object X , which is independent of
the presence of object Y . The rational function in the second term
is the “feedback” due to X interacting with Y . As expected, if the
cross-response JXcross connecting the two ends of X is turned off,
this feedback disappears. In analogy to the transfer function the-
ory for LTI systems, our convolution rules form a comprehensive
basis to describe the response of an arbitrarily complicated net-
work inside a force clamp experiment. And like the transfer func-
tions that arise out of LTI feedback loops, the convolution of
interacting components consists of a nonlinear combination of
the individual response functions. The rational functions due
to the feedback of mechanical perturbations across the connected
elements are nontrivial, but can be exactly accounted for via itera-
tion of the convolution rules.

Two-Step Dynamic Deconvolution Yields Protein Dynamic Properties.
To illustrate our theory, we construct a two-step procedure to
analyze the experimental system in Fig. 1A, with the ultimate goal
of determining dynamic protein properties in the force clamp.

Under a constant force F, the protein extension will fluctuate
around a mean corresponding to a folded or unfolded state.
Though it has been demonstrated that under appropriately tuned
forces the protein can show spontaneous transitions between
folded and unfolded states, we for the moment neglect this more
complex scenario. (In SI Text we analyze simulation results for a
protein exhibiting a double-well free energy, where the two states
can be analyzed independently by pooling data from every visit to
a given well; the same idea can be readily extended to analyze
time-series data from proteins with one or more intermediate
states.) We consider the protein dynamics as diffusion of the re-
action coordinate zPee (the protein end-to-end distance) in a free
energy landscape UPðzPeeÞ. The end-to-end response function JPee
reflects the shape of UP around the local minimum, and the in-
ternal protein friction (i.e., the local mobility), which is the key
quantity of interest. The simplest example is a parabolic well at
position zPee ¼ z0, namely UPðzPeeÞ ¼ UPðz0Þ þ ð1∕2ÞkPðzPee − z0Þ2.
If we assume the protein mobility μP is approximately constant
within this state, the end-to-end response is given by

JPeeðωÞ ¼
μP

μPkP − iω
; [4]

which has the same Lorentzian form as the harmonic two-sphere
end-to-end response in Eq. 1. Depending on the resolution and
quality of the experimental data, more complex fitting forms may
be substituted, including anharmonic corrections and noncon-
stant diffusivity profiles (an example of these is given in the
two-state protein case analyzed in SI Text). However, for practical
purposes Eq. 4 is a good starting point.

An experimentalist seeking to determine JPeeðωÞ would carry
out the following two-step procedure:

First step: Make a preliminary run using a system without the
protein (just two beads and two handles, as illustrated in Fig. 2A).
As described in the Materials and Methods, time derivatives of
autocorrelation functions calculated from the bead position time
series can be Fourier-transformed to directly give J2HB

self and J2HB
cross.

The convolution rules in Eq. 2 relate J2HB
self and J2HB

cross to the bead/
handle response functions, JHB

self and JHB
cross, which via another ap-

plication of Eq. 2 are related to the response functions of a single
bead and a single handle. The bead functions JBself and JBcross de-
pend solely on known experimental parameters (Materials and
Methods), leaving only the handle functions JHself and JHcross as un-
knowns in the convolution equations. Choosing an appropriate
fitting form, determined by polymer dynamical theory (see
Materials and Methods), we can straightforwardly determine
JHself and JHcross.

Second step: Make a production run with the protein. Eq. 3
relates the resulting end-to-end response J2HBþP

ee , extracted from
the experimental data, to the response of the protein alone
JPee. Because the first step yielded the composite handle-bead
functions JHB

self;H, J
HB
self;B, and JHB

cross that appear in Eq. 3, the only
unknown is JPee. We can thus solve for the parameters μP and
kP that appear in Eq. 4.

This two-step procedure can be repeated at different applied
tensions, revealing how the protein properties (i.e., the intramo-
lecular interactions that contribute to the diffusivity μP) depend
on force. Even analyzing the unfolded state of the protein might
yield interesting results: Certain forces might be strong enough to
destroy the tertiary structure, but not completely destabilize the
secondary structure, which could transiently refold and affect μP.

Simulations Validate the Deconvolution Technique. To demonstrate
the two-step deconvolution procedure in a realistic context, we
perform Brownian dynamics simulations mimicking a typical
force clamp experiment: Two beads that undergo rotational and
translational fluctuations are trapped in 3D harmonic potentials
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and connected to two semiflexible polymers that are linked to-
gether via a potential function that represents the protein folding
landscape (see Materials and Methods for details). We ignore
hydrodynamic effects that can easily be accounted for through
parallel coupling pathways, as mentioned above.

We begin with the first step of the deconvolution procedure. A
snapshot of the simulation system, two handles and two beads
without a protein, is shown in Fig. 2A. A representative segment
of the z2HB

ee ðtÞ time series is shown in Fig. 2B. Equilibrium analysis
of the time series yields the end-to-end distribution P2HBðz2HB

ee Þ,
which is useful for extracting static properties of the protein like
the free energy landscape: When the protein is added to the sys-
tem, the total end-to-end distribution is just a convolution of the
2HB and protein distributions. (The asymmetry of P2HB seen in
Fig. 2B arises from the semiflexible nature of the handles.) As
described in Materials and Methods, we use the time series to cal-
culate self and end-to-end mean square displacement (MSD)
curves Δ2HB

self ðtÞ and Δ2HB
ee ðtÞ (Fig. 2C) whose derivatives are pro-

portional to the time-domain response functions J2HB
self ðtÞ and

J2HB
ee ðtÞ. The multiexponential fits to these functions are illu-
strated in Fig. 2C, and their analytic Fourier transforms plotted
in the left column of Fig. 2D. We thus have a complete dynamical
picture of the 2HB system response. However, in order to use
Eq. 3 to extract the protein response, we first have to determine
the handle-bead response functions JHB

α . Although a general fit of
JHB
α is possible, it is useful to apply the knowledge about the bead
parameters and symmetry properties of the handle response. The
handle parameters (the set fkHn ;μHn g in Materials and Methods
Eq. 7) are the only unknowns in the three HB response functions:
JHB
self;H, J

HB
self;B, and JHB

ee . Note that the handle-bead object is clearly
asymmetric, so the self-response will be different at the handle

(H) and bead (B) end. Convolving two HB objects according
to Eq. 2 and fitting the handle parameters to the simulation re-
sults for J2HB

self ðωÞ and J2HB
ee ðωÞ leads to the excellent description

shown as solid lines on the left in Fig. 2D. The handle parameters
derived from this fitting completely describe the HB response
functions JHB

α , shown in the right column of Fig. 2D. The HB
response curves reflect their individual components: There is a
low frequency peak/plateau in the imaginary/real part of the
HB self-response, related to the slow relaxation of the bead in
the trap. The higher frequency contributions are due to the han-
dles, and as a result they are more prominent in the self-response
of the handle end than of the bead end. There is a similarly non-
trivial structure in the end-to-end response, due to the complex
interactions between the handle normal modes and the fluctua-
tions of the trapped bead (see SI Text for more details).

The double-HB end-to-end distribution in Fig. 2B and the HB
response functions in Fig. 2D are all we need to know about the
optical tweezer system: The equilibrium end-to-end distribution
and linear response of any object that we now put between the
handles can be reconstructed. We will illustrate this using a toy
model of a protein. In our simulations for the second step, we use
a parabolic potential UP with U 00

PðzÞ ¼ kP ¼ 0.02 kBT∕a2, and a
fixed mobility μP ¼ 0.05μ0. Here a ¼ 1 nm and μ0 ¼ 1∕6πηa,
where η is the viscosity of water. This leads to the single-Lorent-
zian response function JPee of Eq. 4. If this exact theoretical form
of JPee is convolved with the HB response functions from the first
step according to Eq. 3, we get the result in Fig. 3: very close
agreement with J2HBþP

ee directly derived from the simulated
time-series data. For comparison we also plot the separate
end-to-end responses of the protein alone (P) and the double-
HB setup without a protein (2HB). As expected J2HBþP

ee differs

A B

D

C

Fig. 2. The first step in the deconvolution procedure, needed to determine the handle-bead response JHB: analysis of the optical tweezer system without the
protein. (A, Top to Bottom) A Brownian dynamics simulation snapshot; schematic representation of the system; after the first convolution step handles and
beads are grouped into composite handle-bead (HB) objects; after the second convolution step the full system (“2HB”) constitutes a single object. (B) Part of the
simulation time series for the total system end-to-end distance z2HBee . The time series yields the equilbrium probability distribution P2HBðz2HBee Þ shown at Right.
(C, Top) The MSD functions Δ2HB

self ðtÞ and Δ2HB
ee ðtÞ (Eq. 5) calculated from the simulation; (Bottom) the time-domain response functions J2HBself ðtÞ ¼

ðβ∕2ÞdΔ2HB
self ðtÞ∕dt, J2HBee ðtÞ ¼ ðβ∕2ÞdΔ2HB

ee ðtÞ∕dt. Simulation results (symbols) are numerical derivatives of the curves (Top). The solid lines are a 5-exponential
fit to the simulation results. (D, Left) The real and imaginary parts of the J2HB self and end-to-end response functions. Simulation results (symbols) are just the
Fourier transforms of the multiexponential fits in C. Theoretical fitting results according to Eq. 2 and based on HB functions JHB are shown as solid lines. (Right)
The HB response functions, as determined by the theoretical fitting to the full system data.
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substantially from both of these as correctly predicted by the con-
volution theory. The effect of adding handles and beads to the
protein is to shift the peak in the imaginary part of the total sys-
tem response to lower frequencies. Additionally, we see in J2HBþP

ee
the contributions of the handle and bead rotational motions,
which are dominant at higher frequencies. The sensitivity of
the theoretical fit is shown in the insets of Fig. 3: Zooming in
on the maxima of Re J2HBþP

ee and Im J2HBþP
ee , we plot the true the-

oretical prediction (red/blue curves) and results with μP shifted
away from the true value (thin pink/cyan curves). In fact, if kP
and μP are taken as free parameters, numerical fitting to the si-
mulation J2HBþP

ee yields accurate values of μP ¼ 0.050μ0 and kP ¼
0.0199 kBT∕a2. Examples of successful deconvolution with other
values of the intrinsic protein parameters are given in the double-
well free energy analysis in SI Text.

In practice, any theoretical approach must take into considera-
tion instrumental limitations: Most significantly, there will be a
minimum possible interval ts between data collections, related
to the time resolution of the measuring equipment. The decon-
volution theory can always be applied in the frequency range up
to ωs ¼ 1∕ts. Whatever physical features of any component in the
system that fall within this range can be modeled and extracted
without requiring inaccessible knowledge of fluctuation modes
above the frequency cutoff ωs. In SI Text, we illustrate this directly
on the toy protein discussed above, coarse-graining the simula-
tion time series to 0.01-ms intervals, mimicking the equipment
resolution used in ref. 13. The characteristic frequency of the
protein within the tweezer setup falls within the cutoff, and hence
our two-step deconvolution procedure can still be applied to yield
accurate best-fit results for the protein parameters. SI Text also
includes a discussion of other experimental artifacts—white
noise, drift, and effective averaging of the time series on the time
scale ts—and shows how to adapt the procedure to correct for
these effects.

Conclusion
Dynamic deconvolution theory allows us to extract the response
functions of a single component from the overall response of a
multicomposite network. The theory is most transparently formu-
lated in the frequency domain and provides the means to reverse
the filtering influence of all elements that are connected to the
component of interest. From the extracted single-component re-
sponse function, dynamic properties such as the internal mobility
or friction can be directly deduced. At the heart of our theory
stands the observation that the response of any component in
the network is completely determined by three functions, namely
the cross-response and the two self-responses, which are in gen-
eral different at the two ends. The response of any network can
be predicted by repeated iteration of our convolution formulas
for serial and parallel connections. Self-similar or more compli-
cated network topologies, as occur in viscoelastic media, can thus
be treated as well. We demonstrate the application of our decon-
volution theory for a simple mechanical network that mimics a
double-laser-tweezer setup, but the underlying idea is directly
analogous to the signal processing rules that describe other scalar
dynamic networks, such as electrical circuits or chemical reaction
pathways in systems biology (27). We finally point out that dy-
namic convolution also occurs in FRETexperiments on proteins
where polymeric linkers and conformational fluctuations of fluor-
ophores, as well as the internal fluorescence dynamics, modify the
measured dynamic fluctuation spectrum (28–30). The experimen-
tal challenge in the future will thus be to generate time-series data
for single biomolecules with a sufficient frequency range in order
to perform an accurate deconvolution. For this a careful match-
ing of the relevant time and spatial scales of the biomolecule un-
der study and the corresponding scales of the measuring device
(handles as well as beads) is crucial, for which our theory provides
the necessary guidance.

Materials and Methods
Determining the Total System Response from the Experimental Time Series. A
key step in the experimental analysis is to obtain the system response func-
tions JselfðωÞ and JcrossðωÞ from the raw data (which can either be the double
handle-bead system with or without a protein). These data consist of two
time series zB;LðtÞ and zB;RðtÞ for the left/right bead positions from which
we calculate the MSD functions

ΔselfðtÞ ¼
1

2
hðzB;LðtÞ − zB;Lð0ÞÞ2i þ

1

2
hðzB;RðtÞ − zB;Rð0ÞÞ2i;

ΔeeðtÞ ¼ hðzeeðtÞ − zeeð0ÞÞ2i; [5]

where zeeðtÞ ¼ zB;RðtÞ − zB;LðtÞ, and we have averaged the self-MSD of the
two endpoints because they are identical by symmetry. Calculating the
MSD functions is equivalent to finding the autocorrelation of the time series:
For example, if ReeðtÞ ¼ hzeeðtÞzeeð0Þi is the end-to-end autocorrelation, the
MSD ΔeeðtÞ is simply given by ΔeeðtÞ ¼ 2ðReeð0Þ − ReeðtÞÞ.

From the fluctuation-dissipation theorem (25), the time-domain response
functions JselfðtÞ and JeeðtÞ are related to the derivatives of the MSD func-
tions: JselfðtÞ ¼ ðβ∕2ÞdΔselfðtÞ∕dt, JeeðtÞ ¼ ðβ∕2ÞdΔeeðtÞ∕dt, where β ¼ 1∕kBT .
To get the Fourier-space response, the time-domain functions can be numeri-
cally fit to a multiexponential form; for example, JselfðtÞ ¼ ∑iCi expð−Λi tÞ. In
our simulation examples typically four to five exponentials are needed for a
reasonable fit. Once the parameters Ci and Λi are determined, the expression
can be exactly Fourier-transformed to give the frequency-domain response
function, JselfðωÞ ¼ ∑iCi∕ðΛi − iωÞ. An analogous procedure is used to obtain
JeeðωÞ. The cross-response follows as Jcross ¼ Jself − Jee∕2. The power spectrum
associated with a particular type of fluctuation, for example, the end-to-end
spectrum ReeðωÞ (defined as the Fourier transform of the autocorrelation), is
just proportional to the imaginary part of the corresponding response func-
tion: ReeðωÞ ¼ ð2kBT∕ωÞImJeeðωÞ.

Bead Response Functions. The response functions of the beads in the optical
traps are the easiest to characterize, because they depend on quantities that
are all known by the experimentalist: the trap stiffness ktrap, bead radius R,
mobility μB ¼ 1∕6πηR, and rotational mobility μrot ¼ 1∕8πηR3. Here η is the
viscosity of water. For each bead the three response functions can be defined

Fig. 3. Real (Top) and imaginary (Bottom) parts of the total end-to-end
response J2HBþP

ee ðωÞ of an optical tweezer system with the protein modeled
as a single parabolic potential well (kP ¼ 0.02 kBT∕a2, μP ¼ 0.05μ0). Symbols
are simulation results, and the solid line is the theoretical prediction, based
on the convolution of the protein response JPeeðωÞwith the HB response func-
tions JHB of Fig. 2D according to Eq. 3. For comparison, JPeeðωÞ (dashed line)
and J2HBee ðωÞ (dot-dashed line) are also included. (Insets) To show the sensitivity
of the theoretical fitting, zoomed-in sections of J2HBþP

ee ðωÞ near the maxima
of the real (Top) and imaginary (Bottom) components. Both simulation
(symbols) and theoretical (blue/red curve) results are plotted. The thin
pink/cyan curves are theoretical results with μP different from the true value:
(Left to Right) μP ¼ 0.01, 0.03, 0.07, and 0.09μ0.

Hinczewski et al. PNAS ∣ December 14, 2010 ∣ vol. 107 ∣ no. 50 ∣ 21497

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1010476107/-/DCSupplemental/pnas.1010476107_SI.pdf?targetid=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1010476107/-/DCSupplemental/pnas.1010476107_SI.pdf?targetid=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1010476107/-/DCSupplemental/pnas.1010476107_SI.pdf?targetid=STXT


as described above, with the two “endpoints” being the handle-attachment
point on the bead surface (zS) and the bead center (zB). The latter point is
significant because this position is what is directly measured by the experi-
ment. For the case of large F, where the rotational diffusion of the bead is
confined to small angles away from the z axis, the response functions are

JBself;BðωÞ ¼ JBcrossðωÞ ¼
μB

μBktrap − iω
;

JBself;SðωÞ ¼
μB

μBktrap − iω
þ 2kBTμrotRðFÞ−1

2μrotRF − iω
: [6]

The second term in JBself;SðωÞ describes the contribution of the bead rotational
motion, which has a characteristic relaxation frequency 2μrotRF. This term is
derived in SI Text, though it can also be found from an earlier theory of rota-
tional Brownian diffusion in uniaxial liquid crystals (31).

Handle Response Functions. The double-stranded DNA handles are semiflex-
ible polymers whose fluctuation behavior in equilibrium can be decomposed
into normal modes. We do not need the precise details of this decomposition,
beyond the fact that by symmetry these modes can be grouped into even and
odd functions of the polymer contour length, and that they are related to the
linear response of the polymer through the fluctuation-dissipation theorem.
From these assumptions, the handle response functions have the following
generic form (a fuller description can be found in SI Text):

JHselfðωÞ ¼
iμH0
ω

þ ∑
Nmode

n¼1

μHn
μHn kHn − iω

;

JHcrossðωÞ ¼
iμH0
ω

þ ∑
Nmode

n¼1

ð−1ÞnμHn
μHn kHn − iω

; [7]

for some set of 2Nmode þ 1 parameters fμHn ;kH
n g. Note that because the

handles are symmetric objects, the self-response of each endpoint is the same
function JHselfðωÞ. The mobilities μHn and elastic coefficients kH

n encode the nor-
mal mode characteristics, with the mode relaxation times τn ≡ 1∕ðμHn kH

n Þ or-
dered from largest (n ¼ 1) to smallest (n ¼ Nmode). The parameter μH0 is the
center-of-mass mobility of the handle along the force direction. Simple scal-
ing expressions for the zeroth and first mode parameters in terms of physical
polymer parameters as well as the connection between the expressions in
Eq. 1 and Eq. 7 are given in SI Text. (These same expressions, with a smaller
persistence length lp, could describe a completely unfolded, noninteracting,
polypeptide chain at high force.) In practice, the high-frequency cutoff Nmode

can be kept quite small (i.e., Nmode ¼ 4) to describe the system over the fre-
quency range of interest.

Numerical Inversion of Convolution Equations. Care must be taken in manip-
ulating Fourier-space relationships such as Eq. 3. Directly inverting such equa-
tions generally leads to numerical instabilities due to noise and singularities.
In our case, we can avoid direct inversion because the forms of the compo-
nent functions are known beforehand (i.e., Eq. 6 for the beads, Eq. 7 for the
handles, and Eq. 4 for the protein). Thus when we model the response of the
double handle-bead system with a protein, J2HBþP

ee ðωÞ, we end up through
Eqs. 2 and 3 with some theoretical function ~J2HBþP

ee ðω;KÞ, where K is the
set of unknown parameters related to the components. Because J2HBþP

ee ðωÞ
is known as a function of ω from the experimental time-series, we find K
by minimizing the goodness-of-fit function MðKÞ ¼ ∑ω∈Ω½log jJ2HBþP

ee ðωÞj−
log j~J2HBþP

ee ðω;KÞj�2, where Ω is a logarithmically spaced set of frequencies,
up to the cutoff frequency ωs ¼ 1∕ts determined by the time resolution ts
of the measuring equipment. This is equivalent to simultaneously fitting
the real and imaginary parts of our system response on a log–log scale.

Simulations. In our Brownian dynamics simulations each handle is a semiflex-
ible bead-spring chain of 25 beads of radius a ¼ 1 nm, every bead having
mobility μ0 ¼ 1∕6πηa. The handle persistence length is lp ¼ 20a. The harmonic
springs used to connect all components together (including the beads
making up the handles) have stiffness γ ¼ 300 kBT∕a2. The beads have radius
R ¼ 50a, and the traps have strength ktrap ¼ 0.00243 kBT∕a2, which corre-
sponds to 0.01 pN∕nm. The traps are positioned such that the average force
in equilibrium F ≈ 3 kBT∕a ¼ 12.35 pN.

To capture the essential features of protein dynamics, we construct a sim-
ple toy model. The protein is characterized by two vectors: a center-of-mass
position rPcm and an end-to-end separation rPee. Both rPcm and the transverse
components of rPee obey standard Langevin dynamics with a mobility
μcm ¼ μ⊥ ¼ 0.12μ0. The internal dynamics of protein fluctuations is modeled
through the longitudinal end-to-end component zPee, subject to a potential
UPðzPeeÞ and a mobility μP. The transverse components ðxPee;yP

eeÞ feel a harmo-
nic potential with spring constant k⊥ ¼ 1.5 kBT∕a2.

The simulation dynamics are implemented through a discretized free-
draining Langevin equation with time step Δt ¼ 3 × 10−4τ, where the time
unit τ ¼ a2∕kBTμ0. Data are collected every 1,000 time steps. Typical simula-
tion times are ∼Oð1010Þ steps, with averages collected from ≈20 independent
runs for each system considered.
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